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ABSTRACT
Cancer cell repopulation after therapy is a phenomenon that leads to therapeutic 

failure with the consequent relapse of the disease. The process is understudied 
and mechanisms need to be uncovered. Here we discuss the issue of cancer cell 
repopulation after chemo- and radio-therapies. We compile evidence alleging that the 
repopulation of cancer cells can be originated from either cancer stem cells resistant 
to therapy, cancer cells that in response to therapy become polyploid and thereafter 
germinate into near-diploid rapid proliferating cells, and/or cells that respond to 
treatment undergoing senescence as a transient mechanism to survive, followed by 
the reinitiation of the cell cycle. Approaches targeted to prevent this post-therapy 
cancer cell repopulation should be uncovered to prevent tumor relapse and thus 
increase overall survival from this devastating disease.

INTRODUCTION

The past two decades have brought great progress 
in the treatment of cancer as patients with the disease live 
longer having access to better diagnosis and therapeutic 
approaches. However, the disease remains incurable. 
One of the reasons for the high resilience of this disease 
is that cancer cells hide and escape from therapies thus 
leading to cancer recurrence. The process whereby cells 
escape therapy is referred to as cancer cell repopulation 
[1] which is a phenomenon that has been mathematically 
modeled [2]. It was first thought that this was a biological 
mechanism limited to the tumor microenvironment 
whereby chemo- and radio-therapies were not efficiently 
distributed within the tumor to kill all cells with the 
capacity to propagate the disease [3]. However, the 
phenomenon can be recreated in vitro. For instance, we 
have shown that ovarian and non-small cell lung cancer 
cells highly sensitive to platinum drugs repopulate a 
culture despite the fact that supra-pharmacological doses 
of the chemotherapeutic agents were utilized in the 
experiments [4–6]; even though the majority of the cells 
were killed by the treatments, always few cells remain in 
culture with the acquired capability to recreate a similar 
population of cancer cells if provided with nutrients, 

space, time, and not incurring in further insults. Likewise, 
cell repopulation has been demonstrated in breast and 
prostate cancers [7–9]. Nevertheless, despite being a well-
documented phenomenon, the mechanisms involved in 
cancer cell repopulation remain poorly understood. In 
this perspective article we summarize three putative, not 
mutually exclusive molecular mechanisms that can drive 
the relapse of cancers via the regrowth of tumor cells that 
escape the initial treatment insult of chemotherapy and/or 
radiotherapy (Figure 1).

PUTATIVE MECHANISMS

Cancer stem cells

One of the first explanations for cancer cell 
repopulation is that the repopulating cells are derived 
from cancer stem cells. This theory implies that cancers 
are heterogeneous and have a progeny within which 
rapidly proliferating cells may be more easily killed by the 
therapy, sparing cells with stem-like phenotypes that are 
less differentiated and have cancer-initiating properties; 
they are termed cancer progenitor cells or cancer stem 
cells, which divide more slowly and therefore become 
spared by drugs and radiation. This residual therapy 
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resistant population is capable to regenerate the disease via 
transit-amplifying cells originating from a niche enriched 
in cancer stem cells [10, 11]. These cells become abundant 
after therapy likely because of the hypoxic conditions 
of the tumor microenvironment [12]. Cancer stem cells 
reside in hypoxic niches and use energy from glycolysis 
to gain protection from reactive oxygen species (ROS) 
usually generated during oxidative phosphorylation; they 
also divide asymmetrically to preserve their identity by 
preventing further mutations [13]. To demonstrate their 
complexity, it has been shown that in many cancer types 
they can interconvert within the tumor niche into non-
cancer initiating cells via the epithelial-to-mesenchymal 
transition [14]. In addition, they have unique biomarkers 
and signaling pathways that vary among cancer types 
[15,  16]; these markers and pathways are essential to 
locate these scarce cells within a tumor. Whereas standard 
chemo- and radio-therapies seem to kill more differentiated 
cancer cells than cancer initiating cells [17], the ones with 
cancer stem cell properties develop resistance to treatment, 
persist within a niche, and regenerate a tumor by induction 
of proliferation upon escape from mitotic arrest [17].

It has been reported that the stem-like cells that 
resist treatment may also be influenced in a paracrine 
manner by dying cancer cells through a mechanism 

initially reported in wound healing regenerative processes 
called “Phoenix rising”; this program involves cell death 
followed by compensatory proliferation driven by active 
caspase-3 leading to the generation of arachidonic acid as 
precursor of prostaglandin E2, which is needed for stem 
cell proliferation [9, 17, 18]. This phenomenon has been 
mathematically modeled [19] and is a putative mechanism 
whereby therapy-induced dying cells release factors that 
promote cancer cell repopulation.

A long-term yet challenging approach to abrogate 
the repopulating capacity of a tumor requires targeted 
approaches, which may not affect the bulk of the tumor, 
yet may eradicate the cancer propagating capacity of 
cancer stem cells only; targeting the slow dividing cancer 
initiating cells should lead to impaired recurrence [13, 16]. 
Finally, targeting pathways within the cancer stem cell 
niche or using immunotherapeutic strategies may provide 
a good opportunity to prevent cancer cell repopulation 
[20–22].

Polyploid giant cancer cells

Another feasible mechanism to justify cancer cell 
repopulation is that repopulating cells are derivatives 
of polyploid giant cancer cells formed in response to 

Figure 1: Presumed models of tumor cell repopulation after escaping chemoradiation.
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therapies. These giant cells can be induced by hypoxia, 
chemotherapy, and radiation therapy [23–26]. However, 
with time, the polyploid giant cells are capable to give 
rise to smaller, near diploid highly proliferative cells via 
a mechanism coined as “neosis”, “hypo-diploidization”, 
or “reverse ploidy” [27, 28]. This is a modality of cell 
division generated in cells that escape mitotic crisis 
by undergoing budding followed by nuclear division 
and asymmetric cytokinesis resulting in the formation 
of aneuploid and mitotically active cells with genome 
stability [29, 30]. The polyploid giant cells are usually 
formed in response to the stress of chemoradiation, with 
the majority of them undergoing cell death. However, few 
survive isolating the chromosomes required by diploid 
tumor cells and producing a chemoresistant progeny via 
depolyploidization [31–33]. The polyploid giant cells 
arise as a consequence of endoreplication leading to the 
formation of mononucleated giant cells first, followed 
by cytokinetic failure and cell-cell fusion, thus giving 
rise to daughter cells able to proliferate for a long-term 
and carrying new chromosome alterations that cause 
distant metastases [32, 34, 35]. The emerging cells from 
polyploidy giant progenitors inherit stem-like properties 
[36] with capacity to differentiate into multiple malignant 
cell types [37]. The polyploid giant cells give rise to a near 
diploid progeny that gradually develops a more aggressive 
phenotype with passaging [38]. The overall process of 
hypo-diploidization utilizes meiosis-specific genes while 
cells eliminate excess chromatin [39, 40]. It is anticipated 
that uncovering the mechanism of reverse ploidy should 
guide researchers into developing targeted therapies that 
may prevent tumor recurrence.

Transient senescence cells

Growing evidence supports the idea that cancer 
cell repopulation happens as a consequence of transitory 
senescence. It is hypothesized that a rare percentage of 
cancer cells escape treatment by undergoing transient 
cell cycle arrest acquiring a senescence phenotype. This 
phenomenon has been often considered irreversible 
and characterized by cells having a flat morphology, 
expressing senescence-associated beta galactosidase 
due to enlargement of the lysosomal compartment, with 
formation of heterochromatic foci and endowed with 
a unique secretory program [41, 42]. One of the most 
important function of senescence is tumor suppression as 
these cells limit tumor progression by upregulating p53, 
p16, and p21, and are cleared by the immune system to 
limit tumorigenesis in usually premalignant lesions, or 
following cancer therapy [43, 44]. However, if senescence 
persists, it can also have detrimental effects in cancer 
tissues because the secretory phenotype of senescence 
cells generate a pro-inflammatory condition that favors 
tumor progression [42, 45].

The irreversibility of the senescence phenotype 
has nonetheless been heavily disputed. For instance 

senescent cells with low expression of tumor suppressor 
p16ink4 resume cell growth upon inactivation of tumor 
suppressor p53 [46], p53 null lung cancer cells escape 
senescence induced by various drugs including cisplatin, 
camptothecin, etoposide, paclitaxel and vindesine 
by upregulating cyclin-dependent kinase 1 (Cdk1) 
[47], senescent colon and breast cancer cells regain 
proliferative capacity upon exposure to doxorubicin [48, 
49], whereas senescent melanoma cells proliferate again 
upon the overexpression of the inhibitor of apoptosis 
protein survivin [50]. Escape from senescence has been 
also reported in breast cancer cell cultures exposed to 
conventional chemotherapy with the escaping cells 
expressing stem cell markers (high CD133 and Oct-4), 
low levels of ROS, and increased antioxidant enzymes 
[51]. Reinforcing the concept that indeed a senescence 
phenotype is not irreversible, a recent work, using a model 
of acute myeloid leukemia (AML) demonstrates that 
following chemotherapy, AML cells enter a senescence-
like phenotype that repopulate the tumor leading to AML 
recurrence [52]. Of interest the phenomenon occurred 
by induction of embryonic diapause-like dormancy 
transcriptional signature and stemness reprogramming. 
It was also shown in this model that the induction of 
senescence, tumor survival and tumor persistence is 
dependent on ataxia telangiectasia and Rad3-related 
protein  (ATR) involved in DNA damage/repair. In 
sum, there is mounting evidence that senescence is a 
transitional mechanism that can be induced by an array 
of therapies in various cancers and that is reversible 
with cells re-entering the cell cycle and repopulating 
a tumor. Consequently, it is questionable whether 
developing drugs to induce senescence as a manner to 
arrest cell growth in tumors is a clever way to stop cancer 
recurrence. Instead, usage of senolytic agents such as 
anti-BCL-2 family of proteins [42] or ATR inhibitors 
[52] may be a manner to eliminate transitory senescence 
cells. Perhaps the better approach to eliminate cancer cell 
repopulation is a combination treatment involving first 
chemoradiation-induced transitory senescence, followed 
by senolytic therapies as recently discussed by Wang and 
colleagues [42].
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