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ABSTRACT
Hypoxia and faulty vasculature are well-known hallmarks of cancer and in 

addition to being associated with poor prognosis in patients, these hallmarks are 
also known to contribute to therapy resistance. In recent years, therapeutics that 
alleviate hypoxia and promote normalization of vasculature are being explored for 
cancer therapy. In addition to being hypoxic, cancers such as non-small cell lung 
cancers exhibit elevated oxidative phosphorylation. Therapeutic strategies that can 
normalize vasculature and reduce oxidative phosphorylation could greatly benefit the 
landscape of cancer therapeutics. Here, we highlight a heme-targeting therapeutic 
strategy that demonstrates significant tumor growth inhibition in non-small cell lung 
cancer mouse models using multi-spectral optoacoustic tomography.

The tumor microenvironment (TME) is often highly 
heterogeneous and influences invasion, metastasis, and 
cancer progression as well as response to many types of 
therapy. Tumor vasculature and oxygenation are important 
aspects of TME and faulty tumor vascular oxygenation has 
been identified as a marker for poor prognosis in cancer.

Hypoxia arises from poor oxygen supply due 
to inefficient vasculature as well as increased oxygen 
demand due to rapid growth. Hypoxia is associated with 
poor prognosis, increased genomic instability, elevated 
metastatic potential, and resistance to chemotherapy and 
radiotherapy [1]. Hypoxia and induction of angiogenesis 
are prognostic markers of cancer and are associated 
with therapy resistance. Neovasculature generation by 
angiogenesis occurs in tumors to fulfill nutrition and 
oxygenation needs as well as providing means to remove 
metabolic waste and carbon dioxide [2]. However, this 
neovasculature is poorly functional. Such tumor vessels 
are characterized by reduced blood flow, endothelial cell 
sprouting, disruption of endothelial cell junctions, loss of 
pericytes coverage, and increased leakiness. This results in 
increased hypoxia and intravasation of tumor cells [3]. The 
tumor microenvironment is not only hypoxic and acidic, 
but is also surrounded by high interstitial pressure which 

hinders drug delivery into tumors [4–6]. Therefore, anti-
angiogenic therapies have been investigated extensively 
and have focused on inhibiting new vessel formation or 
selective destruction of the existing tumor vessels to starve 
tumor cells [7–9]. To overcome challenges associated 
with drug delivery due to faulty vasculature in tumors, 
strategies to normalize vasculature are being explored 
[10]. Normalized tumor vasculature leads to decreased 
leakage, increased perfusion, and reduced hypoxia, which 
improves the whole tumor microenvironment to make 
it favorable for drug delivery and overcome therapy 
resistance [11].

Cancer cells exhibit upregulated glycolysis, which 
has led to the assumption that oxidative phosphorylation 
(OXPHOS) is downregulated in all cancers. However, 
there is increasing evidence of elevated levels of 
OXPHOS in many types of cancer [12–14]. Certain types 
of NSCLCs (non-small cell lung cancers) are found to be 
heavily reliant on OXPHOS [15]. NSCLCs also exhibit 
metabolic heterogeneity within tumors [14]. In these 
cancers, inhibition of OXPHOS can provide an effective 
therapeutic strategy. Reduced oxygen availability in 
hypoxic regions of tumors may not limit OXPHOS [12], 
since ATP is known to be generated by OXPHOS in 
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tumors even at very low oxygen tensions [16]. Therefore, 
targeting OXPHOS could be an effective way to reduce the 
consumption of oxygen and increase oxygen availability 
in the tissue. This results in increased oxygen diffusion 
into otherwise hypoxic tumor regions thereby alleviating 
tumor hypoxia. Studies have shown that reduction in the 
OCR (Oxygen Consumption rate) can alleviate the central 
region of hypoxia by increasing the availability of free 
oxygen [17, 18]. Indeed, modeling has shown that reduced 
oxygen consumption can be more effective than increased 
oxygen delivery [19].

There is overwhelming evidence pointing to the 
reliance of cancer cells on mitochondrial dysfunction and 
oxidative metabolism for their growth and progression. 
This suggests that targeting OXPHOS and mitochondria, 
in general, can be an effective strategy to treat cancer. 
However, to treat genetically and metabolically diverse 
cancers, it is essential to investigate novel therapeutic 
avenues that would be effective against a wide variety of 
cancers. Targeting OXPHOS via limitation of heme is one 
such promising approach [15, 20].

Heme is central to oxygen utilization and serves as a 
prosthetic group or cofactor for many OXPHOS proteins. 

HSP2 or HeSP2 (heme-sequestering peptide 2) and CycT 
(cyclopamine tartrate) are two heme targeting agents that 
effectively inhibit OXPHOS, and have been shown to 
suppress lung tumor growth and progression in human 
tumor xenograft mouse models [15, 20] (Figure 1). HSP2 
(generated from bacterial hemophore HasA Y. pestis) 
binds to heme strongly, inhibits heme uptake, decreases 
mitochondrial heme levels, and diminishes OXPHOS and 
ATP generation in NSCLC cells. HSP2 has significantly 
suppressed subcutaneous and orthotopic NSCLC tumor 
xenografts in mice [15]. Many imaging tools are available 
for non-invasive assessment of tumor oxygenation 
[21] and Ghosh et al. effectively used multispectral 
optoacoustic tomography (MSOT) and oxygen-enhanced 
(OE) MSOT to monitor changes in tumor vasculature 
and oxygenation in live animals. They demonstrated that 
HSP2 and CycT, which also inhibit OXPHOS and oxygen 
consumption not only reduce ATP generation, but also 
alleviate tumor hypoxia and normalize tumor vasculature 
in NSCLC tumors [22] (Figure 1).

These heme-targeting drugs are effective at 
reducing tumor burden in autochthonous mouse models 
of lung cancer [23]. Heme-targeting drugs are potentially 

Figure 1: Heme targeting drugs improve tumor vascular oxygenation in NSCLC tumors. NSCLC tumors have elevated 
heme flux and OXPHOS along with increased hypoxia with faulty vasculature (panel on the left). Treatment with heme-targeting drugs like 
HSP2 and CycT leads to lower heme flux, decrease in OXPHOS which subsequently leads to alleviation of hypoxia and normalization of 
vasculature (panel on the right).
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promising therapeutics in other cancers in addition 
to NSCLC [24]. Dynamic monitoring of the tumor 
microenvironment using optoacoustic tomography offers a 
valuable tool to determine time of treatment administration 
and asses its efficacy. The use of heme-targeting 
drugs to modulate the tumor microenvironment along 
with monitoring of vascular oxygenation status using 
optoacoustic tomography could be a promising approach 
to effectively inhibit angiogenesis, normalize vasculature, 
and alleviate hypoxia in tumors. This, combined with 
the current standard of care therapies could be a highly 
effective approach to target a wide variety of cancers and 
could significantly improve patient outcome.
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