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Since radiologic exams were converted from analog 
to digital images, radiologists have made efforts to extract 
quantitative data from them. In 2012, the word “radiomics” 
was introduced by Lambin [1] to describe this new 
science that aims at extracting quantitative features from 
diagnostic images [2]. One of the possible applications of 
radiomics in oncology is the investigation of connections 
between specific radiological phenotypes and molecular 
status, which in turn translates into personalized 
therapeutic decisions. Advantages of radiomics are non-
invasiveness and the ability to describe pathological 
processes in their entirety (i.e., the gross tumor volume) 
and in-vivo (e.g., peri-tumoral environment, anatomical 
relationships), unlike biopsy.  The dimensionality of 
features, the so-called “large p, small n” problem, which 
is the disproportion between the number of features (p) 
and images/patients (n) involved in the study, made 
radiomic features hardly processable with univariate tests, 
because of the random chance of statistically significant 
findings [3], or multivariable statistics, due to high 
correlation between features [4]. Since the amount of 
information collected through radiomic features makes 
traditional statistical analyses impractical, they were 
mostly abandoned in favor of other solutions, such as 
Artificial Intelligence (AI) and Machine Learning (ML). 
In order to reduce dimensionality of data but preserve 
their informative content, prominent roles are played 
by Principal Component Analysis (PCA) [4] or feature 
selection by Least Absolute Shrinkage and Selection 
Operator (LASSO). Notably, ML/AI methods allow 

creating flexible predictive models, based on few, almost 
uncorrelated but reliable features. In the first decade of 
development, radiomic studies were mostly monocentric 
(or even “mono-scanner”), based on unstandardized 
features computed by custom in-house software, required 
manual segmentation, and lacked external validation, 
resulting in scarcely reproducible models. 

In 2021 our group published a study on EGFR 
mutations in NSCLC [5] that started as a monocentric 
study and consequently evolved during the revision 
process. We decided to provide a robust initial features 
selection using a scarcely applied but effective technique, 
test & re-test. This technique, based on the repetition of 
a radiological exam to perform cross-reference on data 
and eliminate radiomic features considered unreliable, in 
clinical practice clashes with evident ethical issues due 
to radiation exposure. However, one radiologic exam 
can provide repeated images: trans-thoracic lung biopsy. 
Our first predictive ML model achieved 94% accuracy 
in the internal validation set, but when we tested it on a 
public dataset available on The Cancer Imaging Archive, 
accuracy did not exceed 60%. Two problems became 
evident: our initial model was too dependent on the 
training cohort and a proper scaling of features was needed 
to ensure an optimal use of PCA. Once such problems 
were solved, we realized that diversity within data is not 
an issue but a value, as an improved variability forces the 
predictive model to become less dependent on the original 
cohort and, therefore, more generalizable. To enhance 
generalization capabilities, we introduced a small dataset 
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from another hospital of our province in the training set. As 
a consequence, accuracy decreased in our cohort to 88.1% 
but significantly improved in external test sets (76.6% and 
83.3%, respectively), leading to the final predictive model.

Nowadays, researchers are sharing radiological 
images to create larger, diversified, public datasets to test 
newly developed predictive models and many efforts have 
been made to standardize radiomic features and to create 
a shared language [6]. Manual segmentation has been 
gradually substituted by automatic or AI-based algorithms, 
which made the process faster and more reproducible. 
Still, many questions remain open and need answers 
before proceeding further: investigators perform radiomic 
analysis to answer a specific question (mutational status, 
prediction of response to therapy) but the connection 
between radiomic features and biological variables is 
not straightforward in most cases. Moreover, the correct 
harmonization of radiomic data between different centers 
still represents a challenge, especially with small and 
heterogeneous datasets. Another issue that may prevent 
the translation of radiomic analyses into clinical practice 
is related to the lack of prospective randomized trials.

Nonetheless, radiomics currently represents the top 
of exploration into radiological images: as the atom has 
been, in physics, the smallest analyzable measure of matter 
for quite a time, so the pixel/voxel represents for radiomics. 
Soon, using new generation CT, PET and MR scanners 
with improved signal and higher spatial resolution, we will 
be able to further reduce pixel dimensions, explore new 
aspects of the radiological image and, hopefully, get some 
insights on its biological counterpart. The human body or 
a tumor are not isolate entities, but complex biological 
processes affected by multiple variables; considering only 
a part of those variables will give a limited view of the 
process in its entirety [7]. An example is the activity of 
immune checkpoint inhibitors (anti-PD1/L1), which is 
not determined exclusively by the level of expression of 
the target (which is itself heterogeneous within the same 
tumor), but also by other immunological checkpoints, or 
by the expression of these receptors on other tissues [8], 
or even on the disposition of lymphocytes in the tumor 
(inflamed, immuno-excluded and immune-desert) [9] 
which can compromise the activity of the drug itself. As 
the most promising aspect of radiomics may reside in 
the capability of describing the complexity of biological 
processes, it is, perhaps, the best tool at our disposal 
to photograph tumor heterogeneity. If we succeed in 
translating radiomics into clinical practice, we will obtain 
a tool that can answer to new, more complex questions 
leading to a factual personalized medicine.
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