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Multiple-response regression analysis links magnetic resonance 
imaging features to de-regulated protein expression and 
pathway activity in lower grade glioma

SUPPLEMENTARY MATERIALS AND METHODS

Model formulation

Consider a regression model of the following form: 
Y = XB + E, where Y is an n × q matrix of responses, X is 
an n × p matrix of predictors, E is an n × q matrix of 
regression errors and B is a p × q matrix of regression 
coefficients. Using the notation of Dawid (1981), we 
further assume E follows the matrix normal distribution 
MNn×q (0n×q , In, ΣG), where 0n×q is an n × q matrix of zeros, 
ΣG is the q × q covariance matrix of q possibly correlated 
responses and In is an identity matrix of size n. We assume 
a separable covariance structure of E along the rows and 
columns and the matrix normal formulation gives Vec(E) 
∼ Nnq (0nq, In ⊗ ΣG ), a multivariate normal, with 
⊗  denoting the Kronecker product. Specifically, our 
assumption is that the n samples are independent, but 
within each sample, the q responses share a common 
covariance structure encoded by ΣG. Conditional 
independence is modeled through an underlying 
(undirected) graph G = (V, E), where V corresponds to 
response variables Y1,…, Yq, with the implication that 
{u, v} ∉ E ⇔ ΣG

−1(u, v) = 0, implying conditional 
independence of u and v given the rest, where u, v ∈ V. 
Clearly, when p and q are much larger than n, the model is 
not identifiable. Thus, following Bhadra and Mallick (30) 
and Feldman et al. (31), we now consider a sparse 
formulation:

Y = Xγ Bγ + E (1).

Let Xγ be an n × pγ is a matrix of relevant predictors 
encoded by the vector γ = (γ1, … , γp) ∈ {0, 1}p with γi = 1 
if ith predictor is present in the model and γi = 0 otherwise. 

Thus, p
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†is the number of active covariates. We 

form Xγ by dropping (p − pγ) columns corresponding to 
inactive predictors from the n × p matrix X; 
correspondingly, Bγ is now a pγ × q matrix of regression 
coefficients for the selected features. E is distributed 
according to MNn×q(0n×q, In, ΣG), as before. We consider the 
following hierarchical Bayesian model:
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ΣG | G ∼ HIWG (b, dIq) ; Bγ | γ,  
ΣG ∼ MNpγ ×q 0pγ ×q, cIpγ, ΣG (3)

Y | Xγ, Bγ, ΣG ∼ MNn×q (Xγ Bγ, In, ΣG) (4)

In Equation (2), we restrict the set of permitted graphs to 
the set of all decomposable graphs with nodes V, and 
define a prior distribution with that support as:

p G W w w
u v E

uv

u v E

uv( |†† )† †
, ,

∝








 −( )










{ }∈ { }∉
∏ ∏ 1  (5)

The hyper-inverse Wishart (HIW) prior is conjugate for 
the covariance matrix in a decomposable Gaussian 
graphical model (Dawid and Lauritzen, 1993). Here b, c, 
d are fixed, positive hyper-parameters. A symmetric matrix 
of parameters W = (wuv)u, v∈V and wγ are fixed prior 
probabilities, presumably close to zero, that control the 
sparsity in G and γ respectively. Thus, the model specifies 
that the priors on ΣG and Bγ are conjugate in a graphical 
setting, which allows analytic marginalization of these 
parameters. Table S1 gives a summary of the variables 
used.

A collapsed gibbs sampler

Bhadra and Mallick (2013) demonstrated that one of 
the main advantages of the model above is that it allows a 
collapsed Gibbs sampler for the dependence structure G 
and a subset of features γ after analytically integrating out 
nuisance terms Bγ and ΣG. The marginal data distribution
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summarizes the contributions of X and Y to the model. 
The hierarchical model collapses to:

Tγ | γ, G ∼ HMTn×q (b, In, dIq)

If the graphs G are decomposable, the distribution of Tγ | 
γ, G is hyper-matrix t (33), a special type of t-distribution 
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which, given the graph, splits into products and ratios over 
the cliques and separators of the graph. We recall that a 
decomposable graph G admits a (perfect) sequence of 
maximal cliques C1,…, Ck so that Sj = (C1 ∪ · · · ∪ Cj−1) 
∩ Cj, j = 2,…,k (called separators) are complete sub-
graphs of G (33). The density of the hyper-matrix-t 
distribution HMTn×q (b, In, dIq) at Tγ = t is
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and tA is a n×|A| sub-matrix of t with columns 
corresponding to cliques A ⊆ V in G (Equation (45) in 
Dawid and Lauritzen, 1993). The densities on the 
separators are defined similarly. This collapsed Gibbs 
sampler alleviates the need to sample Bγ and ΣG in MCMC 
and allows for crucial computational advantages for 
scaling to high dimensions and faster mixing.

MCMC algorithm

We outline the MCMC sampler algorithm of Bhadra 
and Mallick (2013) below and refer the interested reader 
to that article for details. We also follow their 
recommendation for the choice of hyper-parameters b, c 
and d.

Updating γ given G and Tγ

Searching the feature space γ is done through 
addition or deletion of single features. Using wγ ∼ Uniform 

(0, 1) gives p p
p
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as prior on γ after 

integrating out wγ with p
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1. Given current set of features γ, propose candidate γ* 
by either (a) changing a non-zero entry in γ to zero 
with probability (1 − αγ) and set q (γ | γ*) /q (γ* | γ) = 
αγ / (1 − αγ), or (b) changing a zero entry in γ to one, 

with probability αγ and set q (γ | γ*) /q (γ* | γ) = 
(1 − αγ) /αγ.

2. Calculate the likelihood f (t* | γ*, G) and f (t | γ, G) 
where f denotes the HMT density of Equation (7).

3. Accept the candidate γ  
* with probability 
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Updating G given γ and Tγ

Similar to γ; G is searched by random addition or 
deletion of off-diagonal edges. Using wuv ∼ Uniform(0, 1) 
and integrating out wuv gives
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where rG is half the number of edges in the symmetric 
graph G. Two additional constraints for searching G are: 
(a) the proposed candidate G* must be decomposable. If 
not, propose again (a rejection scheme) and (b) the 
proposed candidate G* must be symmetric, since it 
encodes an MRF (Markov Random Field).

Ingenuity pathway analysis

Significantly-associated proteins from the RPPA 
dataset correlated with each VASARI feature were queried 
using the Ingenuity Pathway Analysis software package 
(IPA™ QIAGEN, Redwood City, CA, http://www.qiagen.
com/ingenuity). Correlation co-efficients computed from 
the high-dimensional regression were used as a surrogate 
for fold-change. IPA Core Analyses were run on each list 
of mapped identifiers for each VASARI feature. In the IPA 
software, p-values were computed by applying the right-
tailed Fisher's exact test based on the number of functions/
pathways/molecules in the annotation as defined by the 
molecules in the selected Reference set, the number of 
molecules in the Reference set known to be associated 
with that function, the number of functions/pathways/
molecules in the Reference set, and the number of 
molecules in the Reference set (34).
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Supplementary Table 1: Description of variables and parameters comprising the multiple response regression model
Symbol Dimension Description Symbol Dimension Description

n scalar sample size G q × q conditional 
independence graph

p scalar number of predictor variables Bγ pγ × q matrix of regression 
coefficients

q scalar number of response variables Y n × q matrix of responses

pγ scalar number of selected predictor variables E n × q matrix of regression 
errors

γ p vector of indicators for selecting 
predictors ΣG q × q column covariance 

for errors

X n × p matrix of available predictors W q × q symmetric matrix of 
edge weights

Xγ n × pγ matrix of selected predictors Tγ n × q matrix of marginal 
data distribution
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Supplementary Table 2: Significantly-associated RPPA molecules
Vasari Feature Positively-correlated Negatively-correlated

Cross product length Annexin-VII, PI3K-p85, PR Annexin-1, Chk1-pS345, HER2, Lck, 
STAT5-alpha, YB-1-pS102

Tumor localization to 
the frontal lobe MYH11 eIF4E

Tumor localization in 
the parietal lobe

Bax, Caveolin-1, EGFR-pY1068, EGFR-pY1173, 
HER2-pY1248, Myosin-IIa-pS1943, NDRG1-
pT346, TAZ, TFRC, Transglutaminase, XPB1, 
YB-1-pS102, eIF4E

Annexin-VII, Bcl-2, Bim, HER3, IRS1, 
PI3K-p110-alpha

Edema

4E-BP1-pT70, B-Raf, Beclin, Dvl3, INPP4B, 
MEK1, MIG-6, N-Ras, PDK1, PDK1-pS241, 
PKC-pan-BetaII-pS660, PTEN, Rb-pS807-S811, 
SCD1, p21, p27, p53, p70S6K-pT389, p90RSK

AR, Annexin-1, Collagen-VI, Cyclin-B1, 
Cyclin-D1, EGFR-pY1068, Fibronectin, 
HER2, HER2-pY1248, Lck, MAPK-
pT202-Y204, N-Cadherin, PRDX1, PREX1, 
S6-pS240-S244, Smad1, Src, Src-pY416, 
TAZ, TFRC, YAP, YAP-pS127, eIF4E, 
p38-MAPK, p38-pT180-Y182

Enhancement - Bak, Cyclin-E2

MRI Necrosis
BRCA2, Bid, ER-alpha, HSP70, Mre11, PDCD4, 
RBM15, XRCC1, eEF2K, p27, p27-pT198, p53, 
p90RSK-pT359-S363

14-3-3-zeta, AMPK-alpha, Akt, B-Raf, 
GAPDH, GSK3-alpha-beta, LKB1, MEK1, 
PDK1, PTEN, TSC1

Mild Enhancement 
Quality

14-3-3-zeta, ERK2, GSK3-alpha-beta-pS21-S9, 
GSK3-pS9, MAPK-pT202-Y204, PEA15-pS116, 
PRAS40-pT246, Rictor-pT1135, 
Transglutaminase, Tuberin-pT1462, p38-
pT180-Y182

Chk2-pT68, ER-alpha, FoxM1

Definition of the 
enhancing margin Bcl-xL, HSP70, β-Catenin

14-3-3-epsilon, ADAR1, Bak, CD31, 
Cyclin-E2, GATA3, HER3, NDRG1-pT346, 
Rab25, Shc-pY317

Definition of the 
non-enhancing margin

AMPK-pT172, FOXO3a, Notch1, p62-
LCK-ligand

T1/FLAIR Ratio BRCA2, NF2, PI3K-p110-alpha, TTF1 AMPK-pT172, B-Raf, FOXO3a, HER2, 
STAT5-alpha, TSC1, VHL, c-Kit, eIF4G

Cysts
4E-BP1, 53BP1, ACC-pS79, ASNS, Bap1-c-4, 
Caveolin-1, Cyclin-E1, Dvl3, FASN, IRS1, JNK2, 
Ku80, TTF1, VHL, XRCC1

ACVRL1, CD49b, Chk2, Cyclin-D1, DJ-1, 
N-Cadherin, PKC-delta-pS664, PRAS40-
pT246, PRDX1, PREX1, SF2, Src-pY416, 
Src-pY527, Syk, XPB1, YAP, YAP-pS127, 
α-Catenin, c-Met-pY1235, mTOR-pS2448

Leptomeningeal 
Reaction

ASNS, ATM, BRCA2, Bid, C-Raf, Cyclin-B1, 
EGFR, EGFR-pY1068, EGFR-pY1173, 
Fibronectin, HER2-pY1248, HSP70, IGFBP2, 
MIG-6, PAI-1, STAT5-alpha, Smad1, c-Myc

Acetyl-a-Tubulin-Lys40, Chk1-pS345, 
MEK1, MEK1-pS217-S221, PEA15, 
PKC-delta-pS664, c-Kit, p70S6K-pT389

Enhancing Cortex 
Involvement Annexin-1, Cyclin-B1, Paxillin, Rad50 MYH11, PEA15, Raptor, c-Kit

Multiple-response regression was applied to the combined VASARI feature set and RPPA dataset from 57 patients, and the 
results were filtered to include only molecules significantly correlated with each VASARI feature.
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Supplementary Table 3: Radiological features are associated with unique biological functions in LGG

VASARI Feature Positively-correlated Diseases and Bio-Functions Negatively-correlated Diseases and 
Bio-Functions

T1/FLAIR ratio
Quantity of hematopoietic progenitor cells 1.91
Synthesis of reactive oxygen species 1.264
Cell death of T lymphocytes 1.159

Colony formation of cells -2.433 
Development of genitourinary system 
-2.127
Development of reproductive system 
-2.127

MRI Necrosis
Cell death of epithelial cell lines 2.401 Differentiation 
of tumor cell lines 2.21 Cell death of embryonic cell 
lines 2.2

Cell viability of lymphocytes -2.177 
Cell viability of leukocytes -2.008 Cell 
viability of blood cells -2.404

Leptomeningeal 
reaction

Cell proliferation of fibroblasts 2.77 Mass of organism 
2.613 Proliferation of connective tissue cells 2.618

Apoptosis of prostate cancer cell lines 
-2.232 Radiosensitivity -1.974 Cell 
death of tumor cell lines -1.741

Cross-product length Organismal death 1.804 Apoptosis of tumor cell lines 
1.297 Apoptosis of breast cancer cell lines 1.292

Proliferation of cells -2.227
Proliferation of tumor cell lines -2 
Quantity of leukocytes -1.982

Enhancing cortical 
involvement

Cell death of immune cells 1.972 Apoptosis 1.872
Proliferation of cells 1.53

Quantity of cells -0.89
Migration of cells -0.586
Cell proliferation of tumor cell lines 
-0.52

Mild enhancement 
quality

Cell viability of leukocytes 1.982 Senescence of 
fibroblast cell lines 1.953 Cell spreading 1.964

Apoptosis of carcinoma cell lines 
-2.433 Organismal death -1.667 
Proliferation of epithelial cells -1.513

Edema
Cytostasis 2.206
Senescence of fibroblast cell lines 2.021 
Radiosensitivity of carcinoma cell lines 1.982

Proliferation of tumor cells -3.114 
Chemotaxis -3.1
Migration of cells -3.097

Definition of the 
non-enhancing margin Quantity of cells 0.562

Cellular homeostasis -1.78
Cell viability -1.79
Expression of RNA -1.683

Definition of the 
enhancing margin

Organismal death 2.095
Survival of organism 1.375
Cell viability 1.314

Anoikis -1.969
Apoptosis of kidney cell lines -1.963 
Production of reactive oxygen species 
-1.966

Cysts present
Differentiation of stem cells 1.802 Apoptosis of tumor 
cells 1.772
Formation of focal adhesions 1.732

Invasion of cells -2.95 Invasion of 
tumor cell lines -2.892 Cell movement 
of tumor cell lines -2.871

Tumor localization in 
the parietal lobe

Apoptosis of endothelial cell lines 2 neuronal cell death 
1.828 Migration of breast cancer cell lines 1.725

Cellular homeostasis -1.525 Apoptosis 
of breast cell lines -1.452 Cell viability 
of epithelial cell lines -1.342

Proteins with expression significantly correlated with imaging features were analyzed by IPA. Top diseases and bio-
functions for each feature are shown with the associated –log (Z-score).


