Supplementary Data

Supplementary Table 1

Additional *PIK3R1* and *PIK3R3* genes identified by IPA pathway analysis validated as androgen regulated in LNCaP cells by real-time PCR

Supplementary Table 2

Previously published known AR binding sites within 100 kb of the *PIK3R1* gene and four AR binding sites within 50 kb of the *PIK3R3* gene.

Supplementary Table 3

Meta-analysis of *PIK3R1*, *PIK3R3*, *PIK3CA* and *CCND1* mRNA expression in 728 prostate cancer tumours using data from 10 previously published studies.^{6,21-28}. Data was generated using Oncomine [30].

Supplementary Table 4

Primer sequences used

Supplementary Figure 1: IPA Pathway Analysis of genes associated with *PIK3R1*.

Gene expression changes in LNCaP cells cultured in the presence or absence of androgens for 24 hours. Gene lists from Rajan et al. ¹⁰ were uploaded to the web-based Ingenuity Pathway Analysis (IPA; Ingenuity Systems) software programme, and used to identify novel androgen-regulated genes associated with *PIK3R1*. Genes up-regulated by androgens are highlighted in red, and down-regulated genes are in green. Expression changes for 34 of these genes were validated by real-time PCR (Supplementary Table 1).

Supplementary Figure 2: IPA Pathway Analysis of genes associated with PIK3R3.

Gene expression changes in LNCaP cells cultured in the presence or absence of androgens for 24 hours. Gene lists from Rajan et al. ¹⁰ were uploaded to the web-based Ingenuity Pathway Analysis (IPA; Ingenuity Systems) software programme, and used to identify novel androgen-regulated genes associated with *PIK3R3*. Genes up-regulated by androgens are highlighted in red, and down-regulated genes are in green.

Supplementary Figure 3: Over-expression of p85a in HEK293 cells stabilises p110a.

(A) Over-expression of p85a, p55Y and p110a in Flp-In HEK293 cells was induced by addition of 1 µg/ml tetracycline to the tissue culture medium for 72 hours and detected by western blotting using its corresponding antibody. This confirmed the specificity of our p85a, p55Y and p110a antibodies and showed that an increase in p85a protein stabilises p110a
(B) Depletion of PIK3R3 / p55Y in LNCaP cells by esiRNA was confirmed by western blotting (upper panel) and by real-time PCR (lower panel).

Supplementary Figure 4: PIK3R3 and PIK3CA expression in clinical samples.

(A) Real-time PCR analysis of *PIK3R1* mRNA expression in 32 BPH and 17 PCa tissue samples, and from 9 matched normal and tumour tissue pairs (normalised to 3 housekeeping genes). (B) Real-time PCR analysis of *PIK3R1* mRNA expression in 32 BPH and 17 PCa tissue samples, and from 9 matched normal and tumour pairs(normalised to 3 housekeeping genes).

PI3K pathway		RT	PCR		
Up-regulated				Taylor	etal.
	Fold change*	SE	P value	Fold change	P value
LDLR	6.19	0.87	3.98E-03		not sig.
RAB3B	5.02	0.45	8.40E-04	1.659	1.45E-04
HMGCR	3.28	0.73	0.03521		not sig.
VEGFA	4.23	0.34	6.40E-04		not sig.
NR4A1	13.33	3.95	0.03547	1.220	0.027
SOCS2	9.75	1.56	4.96E-03	1.147	8.00E-03
MTOR	4.25	0.51	3.07E-03	1.215	2.14E-04
ERRFI1	3.49	0.86	0.04492	1.290	2.00E-03
VLDLR	2.20	0.28	0.01313	1.258	3.00E-03
SCR	1.05	0.15	0.74037		not sig.
ANGPT2	31.82	2.80	3.90E-04		not sig.
CALU	7.55	0.85	1.54E-03		not sig.
ORM1	446.31	57.45	1.49E-03		not sig.
LIFR	13.95	3.40	0.01896	1.303	9.00E-03
GHR	2.65	1.01	0.17985	1.095	2.00E-03
MERTK	14.00	3.01	0.0125		not sig.
SEC14L2	8.46	0.74	5.50E-04		not sig.
CSK	1.96	0.42	0.08213	1.083	6.00E-03
ARFIP2	2.08	0.31	0.02542	1.216	9.94E-05
TBC1D4	4.64	0.41	9.30E-04	1.467	8.65E-06
Down-regulated				Taylor	et al.
	Fold change*	SE		Fold change	Pivalue
TII 1	0.38	0.12	5 73E-03	-1 145	2 25E-06
F2R	0.31	0.09	1 80E-03	1.1.10	not sia
SI	0.02	0.01	7.23E-09		not sig.
ADD3	0.21	0.09	8.30E-04	-1,284	0.002
SDC4	0.29	0.04	4.32E-05	-1.471	2.13E-09
KI F10	0.06	0.00	1.50E-08		not sia.
DEPDC6	0.16	0.02	1.14E-06	-1.475	9.00E-06
SORBS2	0.16	0.02	3.67E-06	-	not sia.
PIK3C2B	0.58	0.02	4.19E-05		not sig.
ASAP2	0.56	0.23	0.1304		not sia.
SDC2	0.31	0.07	4.70E-04	-1.272	1.33E-07
HSPG2	0.49	0.11	9.21E-03	-1.370	1.07E-06
ST5	0.38	0.11	4.90E-03	-1.704	1.93E-13
AMPK (PPL	0.67	0.16	0.1088	-1.081	2.36E-04

* Fold change = relative quantification of androgen treated cells normalised to steroid deplete (set as 1)

PIK3R1 gene		start	end	
	chr5:	67,511,584	67,597,649	
PIK3R1 ChIP-seq peaks		start	end	distance
		67419340	67419849	92,244
		67424772	67425507	86,812
DIK2D2 gana		start	and	
PIKSKS gene	- h 1 -		enu 46500700	
	CULT:	46505812	46598708	
PIK3R3 ChIP-seq peaks		start	end	distance
		46634665	46635340	35957
		46634214	46634617	35909
		46634665	46635340	36632
		46640496	46640802	42094
PIK3CA gene		start	end	
	chr3:	178,866,311	178,952,497	
PIK3CA ChIP-seq peaks		start	end	distance
		178,791,302	178791302	75,009

Cancer v normal analysis fold changes 747 samples

Tomlins et al. 2007 101 samples

Prostate carcinoma epithelia v normal

PIK3R1	-3.266 p=5.87E-7
PIK3R3	1.771 p=0.999
РІКЗСА	1.581 p=0.063
CCND1	1.039 p=0.569.

Luo et al. 2002

30 samples Prostate carcinoma vs normal

 PIK3R1
 -6.355 p=0.034.

 PIK3R3
 1.156 p=0.406.

 PIK3CA
 2.451 p=0.106

 CCND1
 -1.296 p=0.091.

Taylor et al 2010

185 samples Prostate carcinoma vs normal

-1.408 p=1.73E-6

 PIK3R3
 1.183 p=0.999

 PIK3CA
 -1.072 p=0.879.

 CCND1
 -1.375 p=3.08E-11.

PIK3R1

Magee et al. 2001

15 samples

Prostate carcinoma vs normal

PIK3R1	p=0.0061.657.
PIK3R3	p=0.2872.676.
PIK3CA	-1.895. p=0.883.
CCND1	-1.100 p=0.227.

Lapointe et al. 2004 112 samples Prostate carcinoma v normal -1.561 p=1.89E-7 1.109 p=0.966 1.058 p=0.878 -1.061 p=0.212.

Arredouani et al. 2009 21 samples Prostate carcinoma vs normal p=0.002. -1.972. p=0.709. 1.070 p=0.708.-1.049 -1.338 p=0.002.

Varmabally et al 2007

19 samples Prostate carcinoma vs normal -1.446 p=0.002 p=0.474.-1.040 p=0.937.-1.181 -1.865 p=1.33E-4.

Singh et al. 2002

102 samples Prostate carcinoma vs normal p=0.021. -1.537. -2.924. p=5.91E-5 p=0.508. -1.003 -1.416 p=0.015.

Grasso et al 2012 122 samples Prostate carcinoma vs normal -1.428 p=4.99E-5. 1.275 p=0.934 -1.079. p=0.943. -1.425 p=1.92E-7.

Vanaja et al. 2003 40 samples Prostate adenocarcinoma vs normal p=0.253. -1.118 -1.174. p=0.019. -1.087. p=0.043 -1.052 p=0.668.

Primer sequences used

Gene	Forward
PIK3R1	GATTCTCAGCAGCCAGCTCTGAT
PIK3R3	CGTGTGCCATTTGTTTTGAC
PIK3CA	GAGAGGGGAATGAAAAGGAGA
GAPDH	AACAGCGACACCCATCCTC
Actin	CATCGAGCACGGCATCGTCA
B-tubulin	CTTCGGCCAGATCTTCAGAC
CCND1	CCGCTGGCCATGAACTACCT
LDLR	AAGGACACAGCACACAACCA
RAB3B	ACGAGAAGCGGGTGAAACT
HMGCR	GACCTTTCCAGAGCAAGCAC
VEGFA	AAGGAGGAGGGCAGAATCAT
NR4A1	GCTACCTTCAAAACCCAAGC
SOCS2	TGCCTTGCCTTCTTAGGTTC
MTOR	ACGCTGTCATCCCTTTATCG
ERRFI1	GGAGCAGTCGCAGTGAGTTT
VLDLR	GCACAAATGGTCGCTGTATT
SCR	TCCTGGTGGGAGAGAACCTG
ANGPT2	GGGAAGGGAATGAGGCTTAC
CALU	TGAGCAAACCCACAGAAAAG
ORM1	CCAACAAGACAGAGGACACG
LIFR	CCACCTTCCAAAATAGCGAGT
GHR	AAGTGAGATGGGAAGCACCA
MERTK	CTGAAAGTGGCAGTGAAGACC
SEC14L2	ACCTCATCAAACCCTTCCTG
CSK	GCCCAGGATGAGTTCTACCG
ARFIP2	CCATCGGGACAAGTATGAGAA
TBC1D4	GCAATGAGTCCCTAAGTGTGG
TLL1	GGCAATCTCTATCGGCAAGA
F2R	GCCAGAATCAAAAGCAACAA
SI	TTCCTTGGTGCTTCTTCGTT
ADD3	ACCAGTCCCCGAACCAAA
SDC4	CCACCGAACCCAAGAAACTA
KLF10	CAATGAAAGCAGCCAGCAT
DEPDC6	GTCCGTGCTGAAGAGACCTG
SORBS2	CAAATAAGCCACAGCGTCCT
PIK3C2B	AATGCTGTCCCCCTCAAACT
ASAP2	ATCCGAAAAGTGTGGCAGAA
SDC2	CCAGCCGAAGAGGATACAAA
HSPG2	GTGCTCATCCAGACCGTGTA
ST5	TACCCCTCTTCTCCCACTGA
AMPK (PPLAB	AGGCACCAGAGAAGGAGGAA

Reverse

GCAGGCTGTCGTTCATTCCAT ATTCCAGAGCCAAGCATCAT ATCATGAATCTCACCCAGACG CATACCAGGAAATGAGCTTGACAA TAGCACAGCCTGGATAGCAAC AGAGAGTGGGTCAGCTGGAA ACGAAGGTCTGCGCGTGTT CAAAGGAAGACGAGGAGCAC CCAGTCTTGGACAGCATTGA ACCAACTCCAATCACAAGACA CATCAGGGGCACACAGGAT CAGCATCTTCCTTCCCAAAG GCTTGGTTCCTTCCCACTTC GCTCAAACACCTCCACCTTC AATAAGAAGAGGGGGCAAGC GCACTGTTCTGGGCTTTCAT CCGACTTGATGGTGAAGC GGTTGGCTGATGCTGCTTAT AGCACCCAAGAAGGCATCAT TGGACATTCAGGTAGGTGGTG GTTCCGACCGAGACGAGTTA CCAGAGTTTCGTTGTTTGGA GACATTTGGGTGGCTGAAGT GTGCCCCCATACTCCACA ACTTGACGGCGACTTTGTTC AAAGTAGGCGGACACAGCAT CGTTCCTGTCCAATCCATCT CCTGGCTGGATGTTTTCTCT CTCCTCATCCTCCCAAAATG CGATTGGGTGTCTGATTTTG GGTCCTGCTGTTTTCAAGTCA ATGCCACCCACAATCAGAG GAGGAAGGCACAGAAAAGTCA CCGTTGACAGAGACGACAAA CCACAAACCAGCCGTCAT GTCCTGGCGAAGGTCGTC TGGCAGGTTAGCAGGTTGAG ATGCGATACACCAACAGCAG GACAAGCCAGAATAGCCAATG TCCTGCTCTTCGGCTCTTTA CAGTTGTTGAAGGACCCAGA

Supplementary Figure 2

Supplementary Figure 3

