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ABSTRACT
Lymphomas represent a diverse group of hematologic malignancies with variable 

clinical behavior and underlying biology. The fifth edition of the WHO classification 
(WHO-HAEM5, 2022) provides an updated, lineage-based framework to categorize 
lymphoid neoplasms, integrating immunophenotypic, genetic, and clinical features. 
With advancements in molecular profiling and immunotherapy, targeted treatments 
have transformed the therapeutic landscape of both Hodgkin and non-Hodgkin 
lymphomas. This review delineates the critical role of cell surface and intracellular 
receptors—including CD19, CD20, CD30, PD-1, and CCR4—in lymphoma pathogenesis 
and as therapeutic targets.

We comprehensively evaluate FDA-approved targeted agents, including 
monoclonal antibodies (rituximab, brentuximab vedotin, obinutuzumab, 
mogamulizumab), immune checkpoint inhibitors (nivolumab, pembrolizumab), CAR 
T-cell therapies (axi-cel, tisa-cel, liso-cel, brexu-cel), bispecific T-cell engagers 
(mosunetuzumab, epcoritamab), and small-molecule inhibitors (ibrutinib, idelalisib, 
venetoclax). Each class is appraised for mechanism of action, efficacy, and safety in 
key lymphoma subtypes.

Despite significant progress, therapeutic resistance remains a major obstacle. 
We categorize resistance mechanisms as antigen loss or modulation, pathway 
reactivation, immune microenvironment adaptation, and genetic/epigenetic evolution. 
Examples include CD19 antigen loss post-CAR-T therapy, BTK mutations conferring 
ibrutinib resistance, and immune checkpoint upregulation impairing T-cell function.

Emerging strategies to counteract resistance include rational combination 
therapies, dual-targeted CAR constructs, next-generation bispecific antibodies, 
and precision-guided immunotherapy. Integration of biomarker profiling, real-time 
resistance monitoring, and novel immune-engineering approaches offers potential to 
overcome current therapeutic limitations.

In conclusion, understanding the molecular basis of lymphoma and resistance 
mechanisms is critical to optimizing targeted therapy. This review synthesizes current 
evidence to inform clinical decision-making and outlines future directions for durable, 
personalized lymphoma care.

INTRODUCTION

Lymphomas are a heterogeneous group of lymphoid 
malignancies, broadly classified as Hodgkin lymphoma 

(HL) and non-Hodgkin lymphoma (NHL) [1, 2]. HL 
accounts for roughly 10–15% of cases, whereas NHL 
(predominantly of B-cell lineage expressing CD20 or 
CD19) comprises about 80–85% [3, 4]. Lymphoma is 
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among the ten most prevalent cancers worldwide [3]. 
Recent estimates indicate ~544,000 new NHL diagnoses 
and ~260,000 deaths globally in 2020 [5]; in the United 
States the overall lifetime risk of developing NHL is 
on the order of a few percent for men and women [5]. 
These tumors are increasingly categorized by the World 
Health Organization 5th Edition (2022), which organizes 
lymphoid neoplasms hierarchically by cell lineage, 
differentiation stage, and genetic features. For example, 
WHO-HAEM5 subgroups include precursor and mature 
B-cell neoplasms, plasma cell neoplasms, precursor 
and mature T/NK-cell neoplasms, classical and nodular 
lymphocyte-predominant Hodgkin lymphomas, as well 
as rarer histiocytic/dendritic disorders [6]. This updated 
classification provides a modern framework for diagnosis 
and integrates novel entities and molecular criteria.

The rationale for targeted therapy in lymphoma 
rests on the cell-of-origin biology and discrete molecular 
aberrations that distinguish malignant lymphocytes from 
normal cells. Unlike cytotoxic chemotherapy, targeted 
agents exploit lymphoma-specific features, such as surface 
antigens or dysregulated signaling pathways [7]. For 
example, the anti-CD20 antibody rituximab, introduced 
in the late 1990s, dramatically improved outcomes in 
B-cell NHL and is now standard in regimens like R-CHOP 
[3]. Brentuximab vedotin (an anti-CD30 antibody-drug 
conjugate) has similarly transformed treatment of relapsed 
HL and CD30 T-cell lymphomas [3, 8]. More recently, 
deeper molecular insights and immune-targeting strategies 
have spurred new therapies (checkpoint blockade, CAR-T 
cells, bispecific T-cell engagers, and small-molecule 
inhibitors) with notable activity in relapsed or refractory 
disease [8]. Nonetheless, no therapy is universally 
curative, and resistance to targeted agents poses a major 
clinical challenge.

Many articles have tracked the arrival of these new 
targeted drugs. Our aim here is to provide a different 
perspective, one that links the science of these therapies 
directly to the clinical realities of drug resistance. We 
move beyond simply listing the available treatments to 
ask a more practical question: why do they eventually 
fail? To answer this, we organize the review around the 
mechanisms of resistance and then explore the emerging 
strategies designed to defeat them. By incorporating the 
newest WHO classification and global drug approvals, we 
hope this work serves as a useful and timely guide for 
clinicians navigating the modern treatment of lymphoma.

METHODOLOGY

This narrative review was conducted to synthesize 
current evidence on targeted therapies and resistance 
mechanisms in lymphoma, with a focus on FDA-approved 
agents and clinically relevant molecular pathways. A 
comprehensive literature search was performed using 
PubMed, MEDLINE, and ClinicalTrials.gov databases 

to identify relevant studies published between January 1, 
2014, and May 2025. Keywords included combinations 
of: “lymphoma,” “targeted therapy,” “monoclonal 
antibodies,” “CAR T-cell therapy,” “immune checkpoint 
inhibitors,” “bispecific antibodies,” “BTK inhibitors,” 
“PI3K inhibitors,” “resistance mechanisms,” and “WHO 
classification of lymphoid neoplasms.”

Articles were included if they met the following 
criteria:

•	 Peer-reviewed primary research studies, systematic 
reviews, or meta-analyses indexed in PubMed.

•	 Clinical trials or cohort studies reporting on efficacy, 
mechanisms of action, or resistance to targeted 
therapies in Hodgkin or non-Hodgkin lymphoma.

•	 English language publications with full-text 
availability.

FDA drug approval status and pivotal trial data 
were cross-referenced through official sources including 
the U.S. Food and Drug Administration (FDA) database 
and NCCN Clinical Practice Guidelines in Oncology. 
Global regulatory perspectives were incorporated by 
cross-referencing approvals with the European Medicines 
Agency (EMA) database.

The WHO classification (5th Edition, 2022) was 
used to standardize terminology and diagnostic categories. 
Mechanistic insights and resistance pathways were 
supplemented by high-impact translational studies and 
review articles from hematology-oncology journals such 
as Blood, Journal of Clinical Oncology, Lancet Oncology, 
Cancer Discovery, and Nature Reviews Clinical Oncology.

Data were extracted and synthesized thematically 
into major categories: receptor biology, therapeutic 
classes, resistance patterns, and emerging strategies. No 
formal meta-analysis or PRISMA-based systematic review 
was conducted, given the narrative scope of the article.

Reference management was performed using 
EndNote X9, and all citations are traceable to PubMed-
indexed sources to ensure reproducibility and integration 
into reference libraries.

THE ROLE OF CELL SURFACE AND 
INTRACELLULAR RECEPTORS IN 
LYMPHOMA

Malignant lymphocytes often overexpress specific 
surface receptors or aberrant intracellular pathways 
that can be therapeutically exploited. CD19 and 
CD20 are canonical B-cell markers: CD19 is a type I 
transmembrane glycoprotein broadly expressed from 
early pro-B cells through mature B cells (downregulated 
on plasma cells) and serves as a critical co-receptor for 
B-cell receptor (BCR) signaling [9, 10]. CD19 is almost 
universally retained on B-cell malignancies, making it 
a highly disease-specific target [9, 11]. CD20 is another 
non-glycosylated membrane protein present from late 
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pro-B through memory B cells (but not on plasma cells), 
involved in B-cell activation and calcium signaling [12]. 
Both antigens are constitutively present on most B-cell 
NHLs, which underlies the success of anti-CD19 and anti-
CD20 therapies [13].

Immune checkpoint molecules also play key roles. 
Programmed death-1 (PD-1, CD279) is an inhibitory 
receptor on T cells that dampens immune responses upon 
engagement of its ligands PD-L1/PD-L2 [14]. In the tumor 
microenvironment many lymphomas upregulate PD-L1/
PD-L2 (e.g., classical HL and certain aggressive B-NHLs), 
leading to T-cell exhaustion and immune evasion [14, 15]. 
Blocking PD-1 can thus “release the brakes” on anti-
tumor T cells. T-cell expressed PD-1 has been successfully 
targeted by antibodies (e.g., nivolumab, pembrolizumab) 
to rejuvenate immunity in HL and some NHL subtypes 
[16, 17].

CD30 is a member of the TNF receptor superfamily 
(TNFRSF8) normally found on activated T and B cells. It 
is highly expressed on Reed-Sternberg cells of classical 
HL and on most anaplastic large cell lymphomas [8, 18]. 
CD30 signals via TRAF adapters to activate NF-kB and 
other pathways that promote lymphocyte survival and 
proliferation [18, 19]. Brentuximab vedotin, an anti-CD30 
antibody-drug conjugate, leverages this specificity and has 
yielded high response rates in relapsed HL and CD30+ 
T-cell lymphomas [8, 20].

CCR4 (chemokine (C-C motif) receptor 4) is 
expressed on Th2-helper and regulatory T cells as well as 
on skin-homing lymphocytes [21, 22]. CCR4 is markedly 
overexpressed on certain T-cell malignancies, notably adult 

T-cell leukemia/lymphoma (ATLL) and cutaneous T-cell 
lymphoma (CTCL) [21, 23]. As a chemokine receptor for 
CCL17/CCL22, CCR4 contributes to malignant T-cell 
trafficking and survival. The fully humanized anti-CCR4 
monoclonal antibody mogamulizumab, which binds 
CCR4, has demonstrated efficacy in relapsed ATL and 
CTCL by targeting these malignant cells [21–23].

These receptors (and their signaling partners) 
provide the basis for modern targeted treatments. Figure 1 
(below) highlights key lymphoid antigens and intracellular 
pathways and their therapeutic relevance. The clinical 
utility of each receptor is not limited to one agent: for 
instance, CD19 is targeted by monoclonal antibodies 
(tafasitamab), bispecifics (blinatumomab), and CAR T 
cells, whereas CD20 is targeted by chimeric (rituximab, 
obinutuzumab) and humanized antibodies (ofatumumab) 
as well as radionuclide conjugates (ibritumomab). 
Likewise, immune checkpoints (PD-1, CTLA-4) are 
engaged by checkpoint inhibitors, and downstream kinases 
(BTK, PI3K) are blocked by small molecules. In each case, 
exploiting these lymphoma-specific targets can selectively 
deplete malignant cells while sparing normal tissues [9].

Figure 1: Key lymphoma-associated receptors 
and targets. Lymphomas frequently overexpress surface 
antigens (e.g., CD19, CD20, CD30, CCR4) and exploit 
immune checkpoints (PD-1/PD-L1) and oncogenic 
signaling pathways (BCR, PI3K, NF-kB). These molecules 
are targeted by corresponding therapies (monoclonal 
antibodies, CAR-T cells, checkpoint inhibitors, small 
molecules) with noted clinical relevance. Image adapted 
from user-supplied schematic.

Figure 1: Major lymphoma targets and corresponding therapies (monoclonal antibodies, CAR-T, BiTEs, checkpoint 
inhibitors, small molecules).
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FDA-APPROVED TARGETED 
THERAPIES

Multiple classes of targeted agents are now FDA-
approved for various lymphoma indications. Monoclonal 
antibodies (mAbs) were the first wave: the chimeric anti-
CD20 antibody rituximab (approved 1997) became a 
backbone of therapy for B-cell NHL [24, 25]. Other anti-
CD20 mAbs include ofatumumab and obinutuzumab. 
Ibritumomab tiuxetan (a radiolabeled anti-CD20) and 
tositumomab (older agent) likewise exploit CD20 [26]. 
Brentuximab vedotin (anti-CD30 ADC) is approved for 
relapsed HL and systemic ALCL [8, 27]. Daratumumab 
(anti-CD38) is approved in multiple myeloma, but not 
lymphomas [28]. Tafasitamab (anti-CD19) was recently 
approved in combination with lenalidomide for relapsed 
diffuse large B-cell lymphoma (DLBCL) [29, 30]. 
Mogamulizumab (anti-CCR4) is approved for CCR4+ 
ATLL and CTCL [31]. These antibodies kill tumor cells 
via ADCC, CDC, and direct apoptosis, and have yielded 
high response rates in appropriate contexts (e.g., rituximab 
added to CHOP yields ~60–80% cure rates in first-line 
DLBCL [32, 33].

Immune checkpoint inhibitors target negative 
regulatory receptors on T cells. Pembrolizumab and 
nivolumab (anti-PD-1) are approved for relapsed/
refractory classical Hodgkin lymphoma, which almost 
universally overexpresses PD-L1/PD-L2 [34]. These 
agents produce remarkable response rates (~70–80% 
ORR) in HL after failure of chemotherapy or autologous 
transplant, reflecting their ability to reinvigorate anti-
tumor immunity [34]. PD-1 blockade is also approved for 
primary mediastinal B-cell lymphoma and in some T-cell 
lymphomas [35, 36]. Other checkpoint targets (e.g., anti-
CTLA-4) remain investigational in lymphoma [37].

Chimeric Antigen Receptor (CAR) T-cell therapies 
have revolutionized treatment of B-cell NHL. Four CAR-T 
products are FDA-approved for relapsed/refractory 
large B-cell lymphomas (after ≥2 prior lines): axi-cel 
(axicabtagene ciloleucel), tisa-cel (tisagenlecleucel), 
liso-cel (lisocabtagene maraleucel) and brexu-cel 
(brexucabtagene autoleucel, also approved for mantle 
cell lymphoma) [3]. All target CD19 on B cells. Clinical 
trials (ZUMA-1, JULIET, TRANSCEND, ZUMA-2) 
report complete remission rates of ~40–50% in highly 
refractory disease, with durable remissions in a substantial 
fraction [38]. Notably, CAR-T therapy bridges to cures 
in patients otherwise facing poor prognoses. Efforts are 
also underway to apply CAR-T against other targets: for 
example, CD30-directed CARs in Hodgkin lymphoma and 
anti-CD22/CD20 CARs for antigen-loss disease [39].

Bispecific T-cell engagers (BiTEs) and bispecific 
antibodies represent a new class. Blinatumomab (a CD19 
× CD3 BiTE) is approved for B-ALL (not lymphomas) 
[40, 41]. More recently, several CD20×CD3 bispecific 
antibodies gained approvals for B-cell lymphoma [42]. 

In late 2022 and 2023, FDA approved mosunetuzumab, 
epcoritamab, and glofitamab (CD20 × CD3) for relapsed/
refractory follicular lymphoma and DLBCL [43]. These 
agents have also received approval from the EMA, 
highlighting their global impact. These agents recruit 
patient T cells to kill CD20+ tumor cells without genetic 
engineering [44]. Preliminary data show promising 
activity (ORRs often >50%) even in heavily pretreated 
patients [43]. Importantly, BiTEs operate on similar 
principles to CAR-T (T-cell activation via CD3) but offer 
“off-the-shelf” convenience. Other bispecific formats 
under review include odronextamab and plamotamab [45].

Small-molecule inhibitors target dysregulated 
signaling. Ibrutinib (a BTK inhibitor) was the first-in-
class, approved for relapsed mantle cell lymphoma, 
Waldenström’s macroglobulinemia, and CLL/SLL 
[3]. Second-generation BTK inhibitors (acalabrutinib, 
zanubrutinib) followed. PI3K inhibitors (idelalisib, 
copanlisib, duvelisib, umbralisib) gained approval in 
follicular and marginal zone lymphoma [46]. The BCL2 
inhibitor venetoclax is approved for CLL and has activity 
in certain DLBCL subsets [47]. Other agents include 
mTOR inhibitors (everolimus in T-cell NHL) [48]. Novel 
inhibitors (e.g., menin inhibitors in NPM1-mutant cases) 
are in trials [49]. These drugs interfere with key survival 
pathways (BCR signaling, PI3K/AKT/mTOR, apoptosis 
regulators) and have produced durable responses in settings 
where chemotherapy was largely ineffective [9, 49].

Immunomodulatory Drugs (IMiDs) and Protein 
Degraders: Lenalidomide, an immunomodulatory 
drug, is approved for use in mantle cell and follicular 
lymphomas, often in combination with rituximab. It 
exerts its anti-tumor effects by modulating the tumor 
microenvironment, enhancing T-cell and NK-cell activity, 
and directly inducing apoptosis in malignant cells [48]. 
The mechanism of lenalidomide and other IMiDs involves 
binding to the cereblon E3 ubiquitin ligase complex, 
leading to the degradation of specific transcription factors 
like Ikaros and Aiolos. This foundational discovery 
has paved the way for a new class of drugs known as 
proteolysis-targeting chimeras (PROTACs). PROTACs are 
engineered molecules that link a target protein to an E3 
ligase, hijacking the cell’s own protein disposal system to 
induce degradation of oncoproteins previously considered 
“undruggable.” While still in early clinical development 
for lymphomas, BTK-targeting PROTACs are showing 
promise in overcoming resistance to conventional BTK 
inhibitors, representing an exciting frontier in targeted 
therapy [50].

Epigenetic Modifiers: A distinct class of targeted 
therapy involves agents that reverse aberrant epigenetic 
modifications contributing to lymphomagenesis. 
Tazemetostat, an inhibitor of EZH2 (Enhancer of Zeste 
Homolog 2), is a prime example. EZH2 is a histone 
methyltransferase that, when mutated or overexpressed, 
can drive oncogenesis by silencing tumor suppressor 
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genes. Tazemetostat was the first epigenetic drug to 
receive FDA and EMA approval for patients with relapsed 
or refractory follicular lymphoma, specifically for those 
with an EZH2 mutation or with no other satisfactory 
treatment options. This approval marked a significant 
milestone, as tazemetostat is the first molecule to directly 
target an oncogenic event in the epigenetic machinery of 
lymphoma, offering a new therapeutic axis for patients 
with specific molecular profiles [51]. An overview of 
these major therapeutic classes, their mechanisms, and 
common toxicities is provided in Table 1.

RESISTANCE MECHANISMS

Despite these advances, lymphomas often develop 
resistance to targeted agents. Resistance can be classified 
by therapy type.

Antigen loss or modulation

A common escape from immunotherapies is 
downregulation or loss of the target antigen. For example, 
~30–40% of DLBCL patients who relapse after rituximab-
containing therapy exhibit reduced CD20 expression [52]. 

This may occur via CD20 gene deletion, alternative 
splicing, or epigenetic silencing [52]. Similarly, after CD19-
directed CAR-T or BiTE therapy, some patients relapse 
with CD19-negative clones - clinical series report CD19 
antigen loss in up to 10–20% of post-CAR-T relapses [53]. 
Loss-of-target is often irreversible; for instance, once CD19 
is absent, rechallenge with CD19 therapies is futile [53]. 
Receptor shedding or masking (e.g., cleavage of CD20 
from the surface) also contribute to resistance [54].

Signaling pathway reactivation

Tumors can reactivate or bypass inhibited pathways. 
For small-molecule inhibitors, secondary mutations 
emerge. In BTK-inhibitor resistance, mutations in BTK 
(e.g., C481S) or in PLCγ2 (downstream signaling) 
prevent drug binding or activate bypass signals [55]. 
These mutations have been documented in the majority 
of CLL/SLL cases failing ibrutinib [55]. Likewise, PI3K 
inhibitor resistance may involve upregulation of alternate 
PI3K isoforms or MAPK pathway activation [56]. Genetic 
evolution under therapy pressure (new mutations in 
MYD88, CARD11, or other lymphomagenesis genes) can 
sustain survival signals despite targeted blockade [57, 58].

Table 1: Overview of major targeted therapy classes in lymphoma
Therapeutic class Mechanism of action Key lymphoma indications Common class-specific toxicities

Monoclonal 
Antibodies

Bind to surface antigens (e.g., 
CD20, CD30, CD19) to induce 
ADCC, CDC, or deliver a toxin.

B-cell NHLs (DLBCL, FL), 
Hodgkin Lymphoma, T-cell 

lymphomas.

Infusion-related reactions, 
cytopenias, neuropathy (ADCs).

Immune 
Checkpoint 
Inhibitors

Block inhibitory receptors (e.g., 
PD-1) on T cells, restoring anti-

tumor immunity.

Classical Hodgkin 
Lymphoma, PMBCL.

Immune-related adverse events 
(e.g., colitis, pneumonitis, 

endocrinopathies).

CAR T-Cell 
Therapy

Genetically engineered T cells 
expressing a chimeric antigen 

receptor to target tumor antigens 
(e.g., CD19).

R/R B-cell NHLs (DLBCL, 
FL, MCL).

Cytokine Release Syndrome 
(CRS), neurotoxicity (ICANS), 

cytopenias.

Bispecific 
Antibodies

Engage both a tumor antigen 
(e.g., CD20) and an immune cell 

receptor (e.g., CD3) to direct 
T-cell killing.

R/R B-cell NHLs (DLBCL, 
FL).

CRS (typically lower grade than 
CAR-T), infusion reactions, 

cytopenias.

BTK Inhibitors
Covalently bind and inhibit 
Bruton’s Tyrosine Kinase, 
blocking BCR signaling.

CLL/SLL, MCL, 
Waldenström’s.

Bleeding, atrial fibrillation, 
hypertension, diarrhea.

PI3K Inhibitors
Inhibit the PI3K delta isoform, 
disrupting B-cell signaling and 

survival pathways.

R/R Follicular Lymphoma, 
CLL/SLL.

Diarrhea/colitis, hepatotoxicity, 
pneumonitis, infections.

BCL-2 Inhibitors
Restore apoptosis by selectively 

inhibiting the anti-apoptotic 
protein BCL-2.

CLL/SLL, AML. Tumor Lysis Syndrome (TLS), 
neutropenia, GI toxicity.

Epigenetic 
Modifiers

Inhibit enzymes involved in 
epigenetic regulation (e.g., 

EZH2) to restore normal gene 
expression.

R/R Follicular Lymphoma. Secondary malignancies, 
cytopenias, fatigue.
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Tumor microenvironment and immune adaptation

The lymph node milieu can blunt therapies. 
For example, after CAR-T infusion the tumor 
microenvironment may upregulate immune checkpoints 
(PD-L1 on lymphoma or stromal cells) that exhaust 
CAR-T cells [59, 60]. This process is a major contributor 
to CAR-T therapy failure, where an initially robust T-cell 
response wanes over time. The TME can become a hostile 
environment, populated by immunosuppressive cells 
such as regulatory T cells (Tregs) and myeloid-derived 
suppressor cells (MDSCs), which secrete inhibitory 
cytokines like IL-10 and TGF-β. These factors directly 
impair CAR-T cell proliferation, persistence, and 
cytotoxic function, creating a formidable barrier to durable 
responses. CD47 (“don’t eat me” signal) upregulation 
can inhibit antibody-dependent phagocytosis [61]. 
Dysregulated expression of complement inhibitors (CD55, 
CD59) on B cells has also been linked to rituximab 
resistance by limiting CDC [62].

Genetic and apoptotic alterations

Tumor cells may acquire intrinsic survival 
advantages. Overexpression of anti-apoptotic proteins 
(BCL2, MCL1) or loss of pro-apoptotic factors (TP53, 
BIM) can blunt the efficacy of therapies that rely on 
apoptosis induction [63]. Multi-drug resistance pumps 
(e.g., P-gp) can expel small molecules [63]. Clonal 

selection under pressure leads to outgrowth of resistant 
subclones with complex karyotypic changes or gene 
mutations [64].

These resistance mechanisms often act in 
combination. For instance, a CD19 CAR-T patient may 
relapse with both CD19 loss and simultaneous PD-L1 
upregulation [65]. The result is clinical relapse despite 
initial responses. The challenges are analogous across 
therapies: antigen loss for antibody/CAR targets; kinase 
mutations for signaling inhibitors; immune evasion and 
pathway redundancy for all [65]. Figure 2 summarizes 
common resistance pathways seen in lymphoma.

Figure 2: Mechanisms of resistance to targeted 
lymphoma therapies. Resistance arises via target antigen 
downregulation or mutation, reactivation of oncogenic 
pathways, immune/suppressive microenvironment 
adaptations (PD-L1 upregulation, T-cell exhaustion), 
and genetic alterations (mutations in TP53, BCL2 
upregulation). These mechanisms impair efficacy 
of monoclonal antibodies, CAR-T cells, checkpoint 
inhibitors, and kinase inhibitors, driving treatment failure. 
Image adapted from user schematic.

BIOMARKER-GUIDED THERAPY AND 
COMPANION DIAGNOSTICS

The success of targeted therapy is intrinsically 
linked to the ability to identify the right patient for the 

Figure 2: Key resistance mechanisms to targeted therapy (antigen loss, pathway reactivation, microenvironmental 
immune suppression).
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right drug. Biomarker-driven strategies are becoming 
increasingly central to clinical practice in lymphoma, 
moving the field toward precision medicine.

The use of companion diagnostics, while not as 
established as in solid oncology, is growing. For instance, 
while PD-L1 expression is not a strict requirement for 
the use of checkpoint inhibitors in classical Hodgkin 
Lymphoma due to its near-universal expression, 
its assessment can have prognostic value. In other 
lymphomas, its utility is being actively investigated. More 
definitive biomarkers guide the use of small-molecule 
inhibitors. The approval of tazemetostat in follicular 
lymphoma is specifically for patients with a documented 
EZH2 mutation, which is identified via molecular testing. 
Similarly, although not a lymphoma indication, the 
principle is exemplified by vemurafenib in hairy cell 
leukemia, where its use is predicated on identifying the 
BRAF V600E mutation.

Beyond single-gene mutations, broader molecular 
profiling is emerging as a tool to guide therapy. For 
example, in DLBCL, identifying the “cell of origin” 
(germinal center B-cell (GCB) vs. activated B-cell 
(ABC)) can inform prognosis and, increasingly, treatment 
selection in clinical trials. The ABC subtype, which is more 
dependent on BCR and NF-κB signaling, has shown greater 
sensitivity to agents like BTK inhibitors and lenalidomide. 
As our understanding of the molecular drivers of lymphoma 
deepens, the integration of next-generation sequencing and 
other high-throughput technologies into routine clinical 
care will be essential for optimizing the use of targeted 
agents and overcoming resistance.

STRATEGIES TO OVERCOME 
RESISTANCE

Given these hurdles, novel strategies are being 
developed to circumvent resistance. Combination therapies 
can preempt or overcome escape. For example, combining 
agents with complementary targets (e.g., an anti-CD20 
antibody plus a PI3K inhibitor, or a BTK inhibitor plus 
a BCL2 inhibitor) can prevent single-pathway escape 
[66, 67]. In DLBCL, adding the anti-CD79b ADC 
polatuzumab vedotin to R-CHOP (standard chemo) 
improved progression-free survival compared to R-CHOP 
alone exploiting two mechanisms at once (microtubule 
disruption and chemotherapy) [68, 69]. Similarly, trials 
are combining checkpoint inhibitors with other drugs 
(e.g., nivolumab with brentuximab in relapsed HL) to 
enhance immune responses [70]. In CLL and mantle 
cell lymphoma, ibrutinib has been successfully paired 
with anti-CD20 antibodies to deepen remissions [71]. 
Sequential use of modalities (e.g., giving CAR-T after 
antibody failure or vice versa) also extends control [71].

Dual-antigen targeting can thwart single-antigen 
loss. Bispecific CAR T cells or tandem CAR constructs 
targeting CD19 and CD22 (or CD20 and CD22) have 

shown promise in preclinical and early trials of B-cell 
malignancies [72, 73]. Bispecific antibodies (e.g., CD19 
× CD20 bispecifics) are also in development [74]. The 
approved CD20 × CD3 bispecifics (mosunetuzumab, 
epcoritamab, glofitamab) inherently dual-target 
by engaging T cells; new bispecifics against other 
combinations are emerging [42, 75]. By hitting two 
antigens simultaneously, these approaches reduce the 
likelihood of antigen-negative escape.

Next-generation agents and cellular therapies are 
being explored. New CAR-T cells engineered to resist 
exhaustion (e.g., co-expression of PD-1 dominant-negative 
receptors) or incorporate cytokine support (armored 
CARs) may function better in hostile microenvironments 
[76, 77]. Agents targeting additional immune checkpoints 
(e.g., LAG3, TIM3) are entering trials. In T-cell 
lymphomas, CD30 CARS and CD4 CARs are under 
investigation to target common T-cell markers. Novel 
ADCs targeting different antigens (e.g., CD79b, CD74) 
provide options against antigen-loss tumors [78,  79]. 
Small molecules with novel targets (Bruton’s kinase 
PROTACS, reversible BTK inhibitors for C481S mutants, 
or menin/KMT2A inhibitors) address resistance mutations 
[80, 81]. Bispecific antibodies with half-life extensions or 
modified T-cell engagers aim to improve T-cell infiltration 
and persistence [82, 83].

Immunomodulation is another tactic. Agents that 
alter the tumor milieu - for example, lenalidomide or 
checkpoint inhibitors can resensitize tumors to other 
therapies [84, 85]. Radiation or localized therapy can 
be used to release tumor antigens and prime immune 
responses before CAR-T infusion [86, 87]. Allogeneic stem 
cell transplantation remains curative in some resistant cases 
by establishing a graft-versus-lymphoma effect [88, 89].

Lastly, precision medicine and biomarker-driven 
trials attempt to match novel therapies to resistance 
mechanisms [90]. Ongoing trials stratify patients by 
molecular profile (e.g., BTK-mutant vs wild-type) or 
use adaptive designs to add agents at progression [91]. 
Early-phase trials are testing combinations of CAR-T 
with checkpoint blockade or kinase inhibitors to forestall 
relapse [92]. Such rational combinations aim to block the 
tumor’s escape routes as they emerge.

FUTURE PERSPECTIVES AND 
CONCLUSION

Targeted therapies have profoundly changed 
lymphoma care, yet durable cures remain elusive for 
many. Future advances will likely come from deeper 
integration of multi-modal approaches. We anticipate more 
personalized sequencing of therapies based on real-time 
tumor genetics, and iterative use of immunotherapies (for 
example, second-generation CAR-T or CAR-NK cells for 
CAR-T failures). Novel antigen targets (e.g., GPRC5D in 
multiple myeloma analogously, or new B-cell markers) 
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and engineering solutions (universal or allogeneic CARs, 
switchable CARs) are on the horizon [93]. Overcoming 
immune suppression (e.g., targeting Tregs, TAMs, or using 
cytokine therapies) will be critical to extend efficacy [94]. 
Liquid biopsies and molecular monitoring may identify 
resistance early, guiding preemptive treatment adjustments 
[95, 96].

Major challenges persist: treating double-/triple-
refractory disease, managing therapy-related toxicities, 
and extending access in diverse healthcare settings. Even 
as we refine therapies, a full understanding of lymphoma 
biology is needed. For example, elucidating why some 
indolent lymphomas transform and evade therapies could 
reveal novel vulnerabilities. There are also unanswered 
questions about the lymphoma stem cell concept and 
how to eradicate minimal residual disease after targeted 
therapy.

In conclusion, the landscape of targeted lymphoma 
therapy is rapidly evolving. Building on the WHO 
classification and molecular insights, clinicians now 
have an arsenal of immunologic and molecular drugs. 
The unique contribution of this review is its synthesis 
of this therapeutic arsenal with a structured analysis 
of the resistance mechanisms that limit each agent, and 
a forward-looking summary of strategies designed to 
overcome these specific hurdles. Real progress will hinge 
on rational combination strategies and adaptive treatment 
paradigms that anticipate and intercept resistance. 
Ongoing and future clinical trials—many of which 
probe the mechanisms discussed—will define the next 
generation of therapies. Continued translational research, 
aided by high-throughput genomics and immune profiling, 
will be essential to unlock cures for resistant lymphoma.
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