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ABSTRACT

INTRODUCTION (HL) and non-Hodgkin lymphoma (NHL) [1,

Lymphomas are a heterogeneous group of lymphoid
malignancies, broadly classified as Hodgkin lymphoma

Lymphomas represent a diverse group of hematologic malignancies with variable
clinical behavior and underlying biology. The fifth edition of the WHO classification
(WHO-HAEMS5, 2022) provides an updated, lineage-based framework to categorize
lymphoid neoplasms, integrating immunophenotypic, genetic, and clinical features.
With advancements in molecular profiling and immunotherapy, targeted treatments
have transformed the therapeutic landscape of both Hodgkin and non-Hodgkin
lymphomas. This review delineates the critical role of cell surface and intracellular
receptors—including CD19, CD20, CD30, PD-1, and CCR4—in lymphoma pathogenesis
and as therapeutic targets.

We comprehensively evaluate FDA-approved targeted agents, including
monoclonal antibodies (rituximab, brentuximab vedotin, obinutuzumab,
mogamulizumab), immune checkpoint inhibitors (nivolumab, pembrolizumab), CAR
T-cell therapies (axi-cel, tisa-cel, liso-cel, brexu-cel), bispecific T-cell engagers
(mosunetuzumab, epcoritamab), and small-molecule inhibitors (ibrutinib, idelalisib,
venetoclax). Each class is appraised for mechanism of action, efficacy, and safety in
key lymphoma subtypes.

Despite significant progress, therapeutic resistance remains a major obstacle.
We categorize resistance mechanisms as antigen loss or modulation, pathway
reactivation, immune microenvironment adaptation, and genetic/epigenetic evolution.
Examples include CD19 antigen loss post-CAR-T therapy, BTK mutations conferring
ibrutinib resistance, and immune checkpoint upregulation impairing T-cell function.

Emerging strategies to counteract resistance include rational combination
therapies, dual-targeted CAR constructs, next-generation bispecific antibodies,
and precision-guided immunotherapy. Integration of biomarker profiling, real-time
resistance monitoring, and novel immune-engineering approaches offers potential to
overcome current therapeutic limitations.

In conclusion, understanding the molecular basis of lymphoma and resistance
mechanisms is critical to optimizing targeted therapy. This review synthesizes current
evidence to inform clinical decision-making and outlines future directions for durable,
personalized lymphoma care.

2]. HL

accounts for roughly 10-15% of cases, whereas NHL

(predominantly of B-cell lineage expressing CD20 or
CD19) comprises about 80-85% [3, 4]. Lymphoma is
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among the ten most prevalent cancers worldwide [3].
Recent estimates indicate ~544,000 new NHL diagnoses
and ~260,000 deaths globally in 2020 [5]; in the United
States the overall lifetime risk of developing NHL is
on the order of a few percent for men and women [5].
These tumors are increasingly categorized by the World
Health Organization 5th Edition (2022), which organizes
lymphoid neoplasms hierarchically by cell lineage,
differentiation stage, and genetic features. For example,
WHO-HAEMS subgroups include precursor and mature
B-cell neoplasms, plasma cell neoplasms, precursor
and mature T/NK-cell neoplasms, classical and nodular
lymphocyte-predominant Hodgkin lymphomas, as well
as rarer histiocytic/dendritic disorders [6]. This updated
classification provides a modern framework for diagnosis
and integrates novel entities and molecular criteria.

The rationale for targeted therapy in lymphoma
rests on the cell-of-origin biology and discrete molecular
aberrations that distinguish malignant lymphocytes from
normal cells. Unlike cytotoxic chemotherapy, targeted
agents exploit lymphoma-specific features, such as surface
antigens or dysregulated signaling pathways [7]. For
example, the anti-CD20 antibody rituximab, introduced
in the late 1990s, dramatically improved outcomes in
B-cell NHL and is now standard in regimens like R-CHOP
[3]. Brentuximab vedotin (an anti-CD30 antibody-drug
conjugate) has similarly transformed treatment of relapsed
HL and CD30 T-cell lymphomas [3, 8]. More recently,
deeper molecular insights and immune-targeting strategies
have spurred new therapies (checkpoint blockade, CAR-T
cells, bispecific T-cell engagers, and small-molecule
inhibitors) with notable activity in relapsed or refractory
disease [8]. Nonetheless, no therapy is universally
curative, and resistance to targeted agents poses a major
clinical challenge.

Many articles have tracked the arrival of these new
targeted drugs. Our aim here is to provide a different
perspective, one that links the science of these therapies
directly to the clinical realities of drug resistance. We
move beyond simply listing the available treatments to
ask a more practical question: why do they eventually
fail? To answer this, we organize the review around the
mechanisms of resistance and then explore the emerging
strategies designed to defeat them. By incorporating the
newest WHO classification and global drug approvals, we
hope this work serves as a useful and timely guide for
clinicians navigating the modern treatment of lymphoma.

METHODOLOGY

This narrative review was conducted to synthesize
current evidence on targeted therapies and resistance
mechanisms in lymphoma, with a focus on FDA-approved
agents and clinically relevant molecular pathways. A
comprehensive literature search was performed using
PubMed, MEDLINE, and ClinicalTrials.gov databases

to identify relevant studies published between January 1,
2014, and May 2025. Keywords included combinations
of: “lymphoma,” “targeted therapy,” ‘“monoclonal
antibodies,” “CAR T-cell therapy,” “immune checkpoint
inhibitors,” “bispecific antibodies,” “BTK inhibitors,”
“PI3K inhibitors,” “resistance mechanisms,” and “WHO
classification of lymphoid neoplasms.”

Articles were included if they met the following
criteria:

e Peer-reviewed primary research studies, systematic
reviews, or meta-analyses indexed in PubMed.

*  Clinical trials or cohort studies reporting on efficacy,
mechanisms of action, or resistance to targeted
therapies in Hodgkin or non-Hodgkin lymphoma.

* English language publications with full-text
availability.

FDA drug approval status and pivotal trial data
were cross-referenced through official sources including
the U.S. Food and Drug Administration (FDA) database
and NCCN Clinical Practice Guidelines in Oncology.
Global regulatory perspectives were incorporated by
cross-referencing approvals with the European Medicines
Agency (EMA) database.

The WHO classification (5th Edition, 2022) was
used to standardize terminology and diagnostic categories.
Mechanistic insights and resistance pathways were
supplemented by high-impact translational studies and
review articles from hematology-oncology journals such
as Blood, Journal of Clinical Oncology, Lancet Oncology,
Cancer Discovery, and Nature Reviews Clinical Oncology.

Data were extracted and synthesized thematically
into major categories: receptor biology, therapeutic
classes, resistance patterns, and emerging strategies. No
formal meta-analysis or PRISMA-based systematic review
was conducted, given the narrative scope of the article.

Reference management was performed using
EndNote X9, and all citations are traceable to PubMed-
indexed sources to ensure reproducibility and integration
into reference libraries.

THE ROLE OF CELL SURFACE AND
INTRACELLULAR RECEPTORS IN
LYMPHOMA

Malignant lymphocytes often overexpress specific
surface receptors or aberrant intracellular pathways
that can be therapeutically exploited. CDI19 and
CD20 are canonical B-cell markers: CD19 is a type |
transmembrane glycoprotein broadly expressed from
early pro-B cells through mature B cells (downregulated
on plasma cells) and serves as a critical co-receptor for
B-cell receptor (BCR) signaling [9, 10]. CD19 is almost
universally retained on B-cell malignancies, making it
a highly disease-specific target [9, 11]. CD20 is another
non-glycosylated membrane protein present from late
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pro-B through memory B cells (but not on plasma cells),
involved in B-cell activation and calcium signaling [12].
Both antigens are constitutively present on most B-cell
NHLs, which underlies the success of anti-CD19 and anti-
CD20 therapies [13].

Immune checkpoint molecules also play key roles.
Programmed death-1 (PD-1, CD279) is an inhibitory
receptor on T cells that dampens immune responses upon
engagement of its ligands PD-L1/PD-L2 [14]. In the tumor
microenvironment many lymphomas upregulate PD-L1/
PD-L2 (e.g., classical HL and certain aggressive B-NHLs),
leading to T-cell exhaustion and immune evasion [14, 15].
Blocking PD-1 can thus “release the brakes” on anti-
tumor T cells. T-cell expressed PD-1 has been successfully
targeted by antibodies (e.g., nivolumab, pembrolizumab)
to rejuvenate immunity in HL and some NHL subtypes
[16, 17].

CD30 is a member of the TNF receptor superfamily
(TNFRSF8) normally found on activated T and B cells. It
is highly expressed on Reed-Sternberg cells of classical
HL and on most anaplastic large cell lymphomas [8, 18].
CD30 signals via TRAF adapters to activate NF-kB and
other pathways that promote lymphocyte survival and
proliferation [18, 19]. Brentuximab vedotin, an anti-CD30
antibody-drug conjugate, leverages this specificity and has
yielded high response rates in relapsed HL and CD30+
T-cell lymphomas [8, 20].

CCR4 (chemokine (C-C motif) receptor 4) is
expressed on Th2-helper and regulatory T cells as well as
on skin-homing lymphocytes [21, 22]. CCR4 is markedly
overexpressed on certain T-cell malignancies, notably adult

T-cell leukemia/lymphoma (ATLL) and cutaneous T-cell
lymphoma (CTCL) [21, 23]. As a chemokine receptor for
CCL17/CCL22, CCR4 contributes to malignant T-cell
trafficking and survival. The fully humanized anti-CCR4
monoclonal antibody mogamulizumab, which binds
CCR4, has demonstrated efficacy in relapsed ATL and
CTCL by targeting these malignant cells [21-23].

These receptors (and their signaling partners)
provide the basis for modern targeted treatments. Figure 1
(below) highlights key lymphoid antigens and intracellular
pathways and their therapeutic relevance. The clinical
utility of each receptor is not limited to one agent: for
instance, CD19 is targeted by monoclonal antibodies
(tafasitamab), bispecifics (blinatumomab), and CAR T
cells, whereas CD20 is targeted by chimeric (rituximab,
obinutuzumab) and humanized antibodies (ofatumumab)
as well as radionuclide conjugates (ibritumomab).
Likewise, immune checkpoints (PD-1, CTLA-4) are
engaged by checkpoint inhibitors, and downstream kinases
(BTK, PI3K) are blocked by small molecules. In each case,
exploiting these lymphoma-specific targets can selectively
deplete malignant cells while sparing normal tissues [9].

Figure 1: Key lymphoma-associated receptors
and targets. Lymphomas frequently overexpress surface
antigens (e.g., CD19, CD20, CD30, CCR4) and exploit
immune checkpoints (PD-1/PD-L1) and oncogenic
signaling pathways (BCR, PI3K, NF-kB). These molecules
are targeted by corresponding therapies (monoclonal
antibodies, CAR-T cells, checkpoint inhibitors, small
molecules) with noted clinical relevance. Image adapted
from user-supplied schematic.

NHLs, CLL, autoimmune diseases

Broad approvals including lymphoma

Agent Target Indications FDA Approval

Rituximab CD20 NHLs, CLL

Brentuximab vedotin CD30 cHL, ALCL cHLand ALCL

s::‘o't‘i’:“mab CcD79b DLBCL R/R DLBCL

Nivolumab PD-1 cHL cHL and multiple cancers
Pembrolizumab PD-1 cHL, B-cell lymphoma

Vemurafenib BRAF Hairy cell leukemia BRAF V600E melanoma and HCL
Crizotinib ALK ALCL ALK+ lung cancer and ALCL
Ibrutinib BTK CLL, MCL, WM Various B-cell malignancies
Idelalisib PI3KS CLL Approved 2014; withdrawn 2022
Venetoclax Bcl-2 CLL, SLL CLL, SLL, AML

CART-cells CD19/CD20 DLBCL, FL, MCL, ALL B-cell malignancies

Key Resistance Mechanisms

Complement inhibition, CD20 downregulation
Increased MDR1/P-gp expression

CD79b downregulation

Altered tumor microenvironment, HLA loss

Same as nivolumab

KRAS and IRS1 mutations

ALK mutation, IL10RA overexpression

BTK/PLCG2 mutations, MYC overexpression
IGF1R upregulation, MAPK pathway activation

Bcl-2 mutations, apoptosis pathway alterations

Antigen loss, lineage switching, T-cell
exhaustion

Figure 1: Major lymphoma targets and corresponding therapies (monoclonal antibodies, CAR-T, BiTEs, checkpoint

inhibitors, small molecules).
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FDA-APPROVED TARGETED
THERAPIES

Multiple classes of targeted agents are now FDA-
approved for various lymphoma indications. Monoclonal
antibodies (mAbs) were the first wave: the chimeric anti-
CD20 antibody rituximab (approved 1997) became a
backbone of therapy for B-cell NHL [24, 25]. Other anti-
CD20 mAbs include ofatumumab and obinutuzumab.
Ibritumomab tiuxetan (a radiolabeled anti-CD20) and
tositumomab (older agent) likewise exploit CD20 [26].
Brentuximab vedotin (anti-CD30 ADC) is approved for
relapsed HL and systemic ALCL [8, 27]. Daratumumab
(anti-CD38) is approved in multiple myeloma, but not
lymphomas [28]. Tafasitamab (anti-CD19) was recently
approved in combination with lenalidomide for relapsed
diffuse large B-cell lymphoma (DLBCL) [29, 30].
Mogamulizumab (anti-CCR4) is approved for CCR4+
ATLL and CTCL [31]. These antibodies kill tumor cells
via ADCC, CDC, and direct apoptosis, and have yielded
high response rates in appropriate contexts (e.g., rituximab
added to CHOP yields ~60—-80% cure rates in first-line
DLBCL [32, 33].

Immune checkpoint inhibitors target negative
regulatory receptors on T cells. Pembrolizumab and
nivolumab (anti-PD-1) are approved for relapsed/
refractory classical Hodgkin lymphoma, which almost
universally overexpresses PD-L1/PD-L2 [34]. These
agents produce remarkable response rates (~70-80%
ORR) in HL after failure of chemotherapy or autologous
transplant, reflecting their ability to reinvigorate anti-
tumor immunity [34]. PD-1 blockade is also approved for
primary mediastinal B-cell lymphoma and in some T-cell
lymphomas [35, 36]. Other checkpoint targets (e.g., anti-
CTLA-4) remain investigational in lymphoma [37].

Chimeric Antigen Receptor (CAR) T-cell therapies
have revolutionized treatment of B-cell NHL. Four CAR-T
products are FDA-approved for relapsed/refractory
large B-cell lymphomas (after >2 prior lines): axi-cel
(axicabtagene ciloleucel), tisa-cel (tisagenlecleucel),
liso-cel (lisocabtagene maraleucel) and brexu-cel
(brexucabtagene autoleucel, also approved for mantle
cell lymphoma) [3]. All target CD19 on B cells. Clinical
trials (ZUMA-1, JULIET, TRANSCEND, ZUMA-2)
report complete remission rates of ~40-50% in highly
refractory disease, with durable remissions in a substantial
fraction [38]. Notably, CAR-T therapy bridges to cures
in patients otherwise facing poor prognoses. Efforts are
also underway to apply CAR-T against other targets: for
example, CD30-directed CARs in Hodgkin lymphoma and
anti-CD22/CD20 CARs for antigen-loss disease [39].

Bispecific T-cell engagers (BiTEs) and bispecific
antibodies represent a new class. Blinatumomab (a CD19
x CD3 BIiTE) is approved for B-ALL (not lymphomas)
[40, 41]. More recently, several CD20xCD3 bispecific
antibodies gained approvals for B-cell lymphoma [42].

In late 2022 and 2023, FDA approved mosunetuzumab,
epcoritamab, and glofitamab (CD20 x CD3) for relapsed/
refractory follicular lymphoma and DLBCL [43]. These
agents have also received approval from the EMA,
highlighting their global impact. These agents recruit
patient T cells to kill CD20+ tumor cells without genetic
engineering [44]. Preliminary data show promising
activity (ORRs often >50%) even in heavily pretreated
patients [43]. Importantly, BiTEs operate on similar
principles to CAR-T (T-cell activation via CD3) but offer
“off-the-shelf” convenience. Other bispecific formats
under review include odronextamab and plamotamab [45].

Small-molecule inhibitors target dysregulated
signaling. Ibrutinib (a BTK inhibitor) was the first-in-
class, approved for relapsed mantle cell lymphoma,
Waldenstrdom’s macroglobulinemia, and CLL/SLL
[3]. Second-generation BTK inhibitors (acalabrutinib,
zanubrutinib) followed. PI3K inhibitors (idelalisib,
copanlisib, duvelisib, umbralisib) gained approval in
follicular and marginal zone lymphoma [46]. The BCL2
inhibitor venetoclax is approved for CLL and has activity
in certain DLBCL subsets [47]. Other agents include
mTOR inhibitors (everolimus in T-cell NHL) [48]. Novel
inhibitors (e.g., menin inhibitors in NPM 1-mutant cases)
are in trials [49]. These drugs interfere with key survival
pathways (BCR signaling, PI3K/AKT/mTOR, apoptosis
regulators) and have produced durable responses in settings
where chemotherapy was largely ineffective [9, 49].

Immunomodulatory Drugs (IMiDs) and Protein
Degraders: Lenalidomide, an immunomodulatory
drug, is approved for use in mantle cell and follicular
lymphomas, often in combination with rituximab. It
exerts its anti-tumor effects by modulating the tumor
microenvironment, enhancing T-cell and NK-cell activity,
and directly inducing apoptosis in malignant cells [48].
The mechanism of lenalidomide and other IMiDs involves
binding to the cereblon E3 ubiquitin ligase complex,
leading to the degradation of specific transcription factors
like Tkaros and Aiolos. This foundational discovery
has paved the way for a new class of drugs known as
proteolysis-targeting chimeras (PROTACs). PROTACs are
engineered molecules that link a target protein to an E3
ligase, hijacking the cell’s own protein disposal system to
induce degradation of oncoproteins previously considered
“undruggable.” While still in early clinical development
for lymphomas, BTK-targeting PROTACs are showing
promise in overcoming resistance to conventional BTK
inhibitors, representing an exciting frontier in targeted
therapy [50].

Epigenetic Modifiers: A distinct class of targeted
therapy involves agents that reverse aberrant epigenetic
modifications  contributing to lymphomagenesis.
Tazemetostat, an inhibitor of EZH2 (Enhancer of Zeste
Homolog 2), is a prime example. EZH2 is a histone
methyltransferase that, when mutated or overexpressed,
can drive oncogenesis by silencing tumor suppressor
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Table 1: Overview of major targeted therapy classes in lymphoma

Therapeutic class

Mechanism of action

Key lymphoma indications

Common class-specific toxicities

Bind to surface antigens (e.g.,

B-cell NHLs (DLBCL, FL),

f;?gcé?nal CD20, CD30, CD19) to induce  Hodgkin Lymphoma, T-cell _ tinzulf;;’f';‘;ifsdart;acz‘igséS)
odies ADCC, CDC, or deliver a toxin. lymphomas. ytop ’ pathy '
Immune Block inhibitory receptors (e.g., . . Immune-related adverse events
Checkpoint PD-1) on T cells, restoring anti- LCrLaSELﬁLH}?&%(gL (e.g., colitis, pneumonitis,
Inhibitors tumor immunity. ymp ’ ’ endocrinopathies).
Genetically engineered T cells .
CAR T-Cell expressing a chimeric antigen ~ R/R B-cell NHLs (DLBCL, Cytokine Relea'se? Syndrome
: (CRY), neurotoxicity (ICANS),
Therapy receptor to target tumor antigens FL, MCL). .
(.2, CDI19). cytopenias.
Engage both a tumor antigen .
Bispecific (e.g., CD20) and an immune cell R/R B-cell NHLs (DLBCL, CRS (typlcqlly lc?wer grade than
o g . CAR-T), infusion reactions,
Antibodies receptor (e.g., CD3) to direct FL). cvtopenias
T-cell killing. ytopenias.
. Covalently bind and inhibit CLL/SLL, MCL, Bleeding, atrial fibrillation,
BTK Inhibitors Bruton’s Tyrosine Kinase, Waldenstrém’s hvpertension. diarthea
blocking BCR signaling. ' P ’ '
PI3K Inhibitor (Iirl.lhrlbltﬁtll:e 1[;1351cleilt2;1siﬁfo;;né R/R Follicular Lymphoma,  Diarrhea/colitis, hepatotoxicity,
ors srupting B-¢ & £ CLL/SLL. pneumonitis, infections.

survival pathways.

Restore apoptosis by selectively
inhibiting the anti-apoptotic
protein BCL-2.

Inhibit enzymes involved in
epigenetic regulation (e.g.,
EZH?2) to restore normal gene
expression.

BCL-2 Inhibitors

Epigenetic
Modifiers

CLL/SLL, AML.

R/R Follicular Lymphoma.

Tumor Lysis Syndrome (TLS),
neutropenia, GI toxicity.

Secondary malignancies,
cytopenias, fatigue.

genes. Tazemetostat was the first epigenetic drug to
receive FDA and EMA approval for patients with relapsed
or refractory follicular lymphoma, specifically for those
with an EZH2 mutation or with no other satisfactory
treatment options. This approval marked a significant
milestone, as tazemetostat is the first molecule to directly
target an oncogenic event in the epigenetic machinery of
lymphoma, offering a new therapeutic axis for patients
with specific molecular profiles [51]. An overview of
these major therapeutic classes, their mechanisms, and
common toxicities is provided in Table 1.

RESISTANCE MECHANISMS

Despite these advances, lymphomas often develop
resistance to targeted agents. Resistance can be classified
by therapy type.

Antigen loss or modulation

A common escape from immunotherapies is
downregulation or loss of the target antigen. For example,
~30-40% of DLBCL patients who relapse after rituximab-
containing therapy exhibit reduced CD20 expression [52].

This may occur via CD20 gene deletion, alternative
splicing, or epigenetic silencing [52]. Similarly, after CD19-
directed CAR-T or BiTE therapy, some patients relapse
with CD19-negative clones - clinical series report CD19
antigen loss in up to 10-20% of post-CAR-T relapses [53].
Loss-of-target is often irreversible; for instance, once CD19
is absent, rechallenge with CD19 therapies is futile [53].
Receptor shedding or masking (e.g., cleavage of CD20
from the surface) also contribute to resistance [54].

Signaling pathway reactivation

Tumors can reactivate or bypass inhibited pathways.
For small-molecule inhibitors, secondary mutations
emerge. In BTK-inhibitor resistance, mutations in BTK
(e.g., C481S) or in PLCy2 (downstream signaling)
prevent drug binding or activate bypass signals [55].
These mutations have been documented in the majority
of CLL/SLL cases failing ibrutinib [55]. Likewise, PI3K
inhibitor resistance may involve upregulation of alternate
PI3K isoforms or MAPK pathway activation [56]. Genetic
evolution under therapy pressure (new mutations in
MYD88, CARDI11, or other lymphomagenesis genes) can
sustain survival signals despite targeted blockade [57, 58].
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Tumor microenvironment and immune adaptation

The lymph node milieu can blunt therapies.
For example, after CAR-T infusion the tumor
microenvironment may upregulate immune checkpoints
(PD-L1 on lymphoma or stromal cells) that exhaust
CAR-T cells [59, 60]. This process is a major contributor
to CAR-T therapy failure, where an initially robust T-cell
response wanes over time. The TME can become a hostile
environment, populated by immunosuppressive cells
such as regulatory T cells (Tregs) and myeloid-derived
suppressor cells (MDSCs), which secrete inhibitory
cytokines like IL-10 and TGF-B. These factors directly
impair CAR-T cell proliferation, persistence, and
cytotoxic function, creating a formidable barrier to durable
responses. CD47 (“don’t eat me” signal) upregulation
can inhibit antibody-dependent phagocytosis [61].
Dysregulated expression of complement inhibitors (CDS55,
CD59) on B cells has also been linked to rituximab
resistance by limiting CDC [62].

Genetic and apoptotic alterations

Tumor cells may acquire intrinsic survival
advantages. Overexpression of anti-apoptotic proteins
(BCL2, MCL1) or loss of pro-apoptotic factors (TP53,
BIM) can blunt the efficacy of therapies that rely on
apoptosis induction [63]. Multi-drug resistance pumps
(e.g., P-gp) can expel small molecules [63]. Clonal

selection under pressure leads to outgrowth of resistant
subclones with complex karyotypic changes or gene
mutations [64].

These resistance mechanisms often act in
combination. For instance, a CD19 CAR-T patient may
relapse with both CD19 loss and simultaneous PD-L1
upregulation [65]. The result is clinical relapse despite
initial responses. The challenges are analogous across
therapies: antigen loss for antibody/CAR targets; kinase
mutations for signaling inhibitors; immune evasion and
pathway redundancy for all [65]. Figure 2 summarizes
common resistance pathways seen in lymphoma.

Figure 2: Mechanisms of resistance to targeted
lymphoma therapies. Resistance arises via target antigen
downregulation or mutation, reactivation of oncogenic
pathways, immune/suppressive  microenvironment
adaptations (PD-L1 upregulation, T-cell exhaustion),
and genetic alterations (mutations in TP53, BCL2
upregulation). These mechanisms impair efficacy
of monoclonal antibodies, CAR-T cells, checkpoint
inhibitors, and kinase inhibitors, driving treatment failure.
Image adapted from user schematic.

BIOMARKER-GUIDED THERAPY AND
COMPANION DIAGNOSTICS

The success of targeted therapy is intrinsically
linked to the ability to identify the right patient for the

Ibrutinib
\4
Mutations at
binding site
Rituximab i Mutations Vemura_fgnib
Polatuzumab Downregulation altering Idelalisib
of target signalling &anotmlb
pathway =SS
Antigen escape

v

CAR- T cells

Figure 2: Key resistance mechanisms to targeted therapy (antigen loss, pathway reactivation, microenvironmental

immune suppression).
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right drug. Biomarker-driven strategies are becoming
increasingly central to clinical practice in lymphoma,
moving the field toward precision medicine.

The use of companion diagnostics, while not as
established as in solid oncology, is growing. For instance,
while PD-L1 expression is not a strict requirement for
the use of checkpoint inhibitors in classical Hodgkin
Lymphoma due to its near-universal expression,
its assessment can have prognostic value. In other
lymphomas, its utility is being actively investigated. More
definitive biomarkers guide the use of small-molecule
inhibitors. The approval of tazemetostat in follicular
lymphoma is specifically for patients with a documented
EZH2 mutation, which is identified via molecular testing.
Similarly, although not a lymphoma indication, the
principle is exemplified by vemurafenib in hairy cell
leukemia, where its use is predicated on identifying the
BRAF V600E mutation.

Beyond single-gene mutations, broader molecular
profiling is emerging as a tool to guide therapy. For
example, in DLBCL, identifying the “cell of origin”
(germinal center B-cell (GCB) vs. activated B-cell
(ABC)) can inform prognosis and, increasingly, treatment
selection in clinical trials. The ABC subtype, which is more
dependent on BCR and NF-«B signaling, has shown greater
sensitivity to agents like BTK inhibitors and lenalidomide.
As our understanding of the molecular drivers of lymphoma
deepens, the integration of next-generation sequencing and
other high-throughput technologies into routine clinical
care will be essential for optimizing the use of targeted
agents and overcoming resistance.

STRATEGIES TO OVERCOME
RESISTANCE

Given these hurdles, novel strategies are being
developed to circumvent resistance. Combination therapies
can preempt or overcome escape. For example, combining
agents with complementary targets (e.g., an anti-CD20
antibody plus a PI3K inhibitor, or a BTK inhibitor plus
a BCL2 inhibitor) can prevent single-pathway escape
[66, 67]. In DLBCL, adding the anti-CD79b ADC
polatuzumab vedotin to R-CHOP (standard chemo)
improved progression-free survival compared to R-CHOP
alone exploiting two mechanisms at once (microtubule
disruption and chemotherapy) [68, 69]. Similarly, trials
are combining checkpoint inhibitors with other drugs
(e.g., nivolumab with brentuximab in relapsed HL) to
enhance immune responses [70]. In CLL and mantle
cell lymphoma, ibrutinib has been successfully paired
with anti-CD20 antibodies to deepen remissions [71].
Sequential use of modalities (e.g., giving CAR-T after
antibody failure or vice versa) also extends control [71].

Dual-antigen targeting can thwart single-antigen
loss. Bispecific CAR T cells or tandem CAR constructs
targeting CD19 and CD22 (or CD20 and CD22) have

shown promise in preclinical and early trials of B-cell
malignancies [72, 73]. Bispecific antibodies (e.g., CD19
x CD20 bispecifics) are also in development [74]. The
approved CD20 x CD3 bispecifics (mosunetuzumab,
epcoritamab,  glofitamab) inherently = dual-target
by engaging T cells; new bispecifics against other
combinations are emerging [42, 75]. By hitting two
antigens simultaneously, these approaches reduce the
likelihood of antigen-negative escape.

Next-generation agents and cellular therapies are
being explored. New CAR-T cells engineered to resist
exhaustion (e.g., co-expression of PD-1 dominant-negative
receptors) or incorporate cytokine support (armored
CARs) may function better in hostile microenvironments
[76, 77]. Agents targeting additional immune checkpoints
(e.g., LAG3, TIM3) are entering trials. In T-cell
lymphomas, CD30 CARS and CD4 CARs are under
investigation to target common T-cell markers. Novel
ADC:s targeting different antigens (e.g., CD79b, CD74)
provide options against antigen-loss tumors [78, 79].
Small molecules with novel targets (Bruton’s kinase
PROTACS, reversible BTK inhibitors for C481S mutants,
or menin/KMT2A inhibitors) address resistance mutations
[80, 81]. Bispecific antibodies with half-life extensions or
modified T-cell engagers aim to improve T-cell infiltration
and persistence [82, 83].

Immunomodulation is another tactic. Agents that
alter the tumor milieu - for example, lenalidomide or
checkpoint inhibitors can resensitize tumors to other
therapies [84, 85]. Radiation or localized therapy can
be used to release tumor antigens and prime immune
responses before CAR-T infusion [86, 87]. Allogeneic stem
cell transplantation remains curative in some resistant cases
by establishing a graft-versus-lymphoma effect [88, 89].

Lastly, precision medicine and biomarker-driven
trials attempt to match novel therapies to resistance
mechanisms [90]. Ongoing trials stratify patients by
molecular profile (e.g., BTK-mutant vs wild-type) or
use adaptive designs to add agents at progression [91].
Early-phase trials are testing combinations of CAR-T
with checkpoint blockade or kinase inhibitors to forestall
relapse [92]. Such rational combinations aim to block the
tumor’s escape routes as they emerge.

FUTURE PERSPECTIVES AND
CONCLUSION

Targeted therapies have profoundly changed
lymphoma care, yet durable cures remain elusive for
many. Future advances will likely come from deeper
integration of multi-modal approaches. We anticipate more
personalized sequencing of therapies based on real-time
tumor genetics, and iterative use of immunotherapies (for
example, second-generation CAR-T or CAR-NK cells for
CAR-T failures). Novel antigen targets (e.g., GPRC5D in
multiple myeloma analogously, or new B-cell markers)
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and engineering solutions (universal or allogeneic CARs,
switchable CARs) are on the horizon [93]. Overcoming
immune suppression (e.g., targeting Tregs, TAMs, or using
cytokine therapies) will be critical to extend efficacy [94].
Liquid biopsies and molecular monitoring may identify
resistance early, guiding preemptive treatment adjustments
[95, 96].

Major challenges persist: treating double-/triple-
refractory disease, managing therapy-related toxicities,
and extending access in diverse healthcare settings. Even
as we refine therapies, a full understanding of lymphoma
biology is needed. For example, elucidating why some
indolent lymphomas transform and evade therapies could
reveal novel vulnerabilities. There are also unanswered
questions about the lymphoma stem cell concept and
how to eradicate minimal residual disease after targeted
therapy.

In conclusion, the landscape of targeted lymphoma
therapy is rapidly evolving. Building on the WHO
classification and molecular insights, clinicians now
have an arsenal of immunologic and molecular drugs.
The unique contribution of this review is its synthesis
of this therapeutic arsenal with a structured analysis
of the resistance mechanisms that limit each agent, and
a forward-looking summary of strategies designed to
overcome these specific hurdles. Real progress will hinge
on rational combination strategies and adaptive treatment
paradigms that anticipate and intercept resistance.
Ongoing and future clinical trials—many of which
probe the mechanisms discussed—will define the next
generation of therapies. Continued translational research,
aided by high-throughput genomics and immune profiling,
will be essential to unlock cures for resistant lymphoma.
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