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Altos Labs and the quest for immortality: but can we live longer 
right now?
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ABSTRACT
Some visionaries prefer to dream of immortality rather than to actually live 

longer. Here I discuss how combining rapamycin with other modalities may let us live 
long enough to benefit from future discoveries in cellular reprogramming and what 
needs to be done at Altos Labs to make this happen.

People do not actually need to live longer to be 
happy; they just need to believe that they will live longer 
to be happy. After death, we will not know that we did 
not live longer anyway. Therefore, instead of using the 
available life-extending drug rapamycin right away, we 
may choose to wait for miracle discoveries.

If we believe in immortality, we do not need to be 
immortal. The essence of any religion is immortality in 
various forms, and this is what gives the meaning of life 
to true believers. While only a few can be true religious 
believers, we can all believe in scientific miracles. For 
this, we should be familiar with news headlines but not 
too familiar with the technical details. The devil is in the 
details. For example, headlines announce:

Jeff Bezos Is Paying For a Way to Make Humans 
Immortal

How To Reverse Ageing and Stay Young Forever
Meet Altos Labs, Silicon Valley’s latest wild bet on 

living forever
Juan Carlos Izpisua: ‘Within two decades, we will 

be able to prevent aging’.

The work by Juan Carlos Izpisua Belmonte, an 
Institute Director at Altos Labs, Inc., is brilliant. It uses 
genetically modified mice that express the Yamanaka 
factors [1, 2]. But we cannot genetically modify humans. 
For that, we would need a time machine to genetically 
modify our parents or grandparents and then to breed 
them in the right order to mimic mice that express 
Yamanaka factors. And then we would need a time 
machine second time to go to the future to evaluate the 
effect on others in clinical trials, before modifying our 
own grandparents.

Regarding ground-breaking studies by Juan 
Carlos Izpisua Belmonte and co-workers in mice [1, 2]. 
Although lifespan was not measured in these studies, 
long-lived genetically engineered mice will probably be 
created in the near future. Scientific discoveries cannot 
be predicted, otherwise the discovery has already been 
made at the moment of prediction. Medical applications 
can be expected to mainly treat trauma-related conditions 
[1, 3–5].

I like the science of cellular reprogramming, 
because it implicitly rejects the dogma that aging is caused 
by the accumulation of molecular damage, such as DNA 
damage [6]. This is in line with hyperfunction theory of 
quasi-programmed aging [7, 8].

Can a combination of small molecules do the same 
thing as Yamanaka factors? This is possible [9]. But this 
will be a stroke of extraordinary luck because there is 
no reason why such molecules should exist, and (if they 
exist) they have no off-target effects and are not toxic. And 
we still do not know whether partial reprogramming can 
extend normal lifespan.

Fortunately, mice have already been genetically 
modified to live longer by knocking out certain genes  
upstream and downstream of the IGF-1/mTOR signaling 
pathway. In these long-lived mice, the activity of the 
mTOR pathway is decreased [10–15]. It is extraordinarily 
lucky that a small molecule that inhibits the mTOR 
pathway exists. And, what is even more extraordinary is 
that this molecule has been approved for human use since 
1999 for organ transplantation. As reviewed in 2007: 
“one target, mTOR itself, stands out, simply because its 
inhibitor (rapamycin) is a non-toxic, well-tolerated drug 
that is suitable for everyday oral administration” [16].
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As proposed in 2006: “rapamycin, is already 
approved for clinical use, available and can be used 
immediately … rapamycin will be most useful as [an] 
anti-aging drug to slow down senescence and to prevent 
diseases” [7].

Starting in 2009, rapamycin was shown to extend 
lifespan in all species tested, in dozens of strains of mice, 
at various doses and schedules and was effective when 
given transiently and started at old age [17–24]. By 
slowing aging, rapamycin delays age-related diseases and 
especially cancer [25].

Rapamycin is now taken by an uncountable number 
of relatively healthy individuals, off-label, to treat aging 
and, by treating aging, preventing diseases. Rapamycin 
treatment is rapidly becoming a mainstream anti-aging 
intervention [26].

But what does all this have to do with Altos Labs?
First, potential life-extension with rapamycin may 

allow us to win time while awaiting future discoveries 
that will reverse aging. Figuratively, we need to slow time 
before reversing it; as the title queries, “Does rapamycin 
slow down time?” [27].

Second, rapamycin alone is unlikely to extend 
lifespan sufficiently to benefit from Altos Lab’s future 
discoveries in our lifetime. If Altos Labs would allocate 
a small percentage of its funding to develop rapamycin-
based drug combinations, then additional decades of life 
extension may be available 3–5 years from now. (The 
same is applicable to Calico Labs).

There are three overlapping groups of drugs for 
rapamycin-based combinations:

Group 1: A drug (e.g., metformin, aspirin, 
angiotensin II receptor blockers, and PDE5 inhibitors) 
that is useful in several age-related diseases and 
conditions [28].

Group 2: Drugs that can extend lifespan in mice: 
Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid 
[29–31].

Group 3: Gerostatics. In cell culture, gerostatics 
slow down time (figuratively), decelerating both cellular 
mass growth, cell cycle progression and conversion to 
senescence, a process known as geroconversion [32, 
33]. (Note: gerostatics should not be confused with 
senolytics [32]). Rapamycin is a prototypic gerostatic [32, 
33]. Gerostatics exert static effects on cell proliferation. 
In nonproliferating cells, gerostatics decelerate 
geroconversion. In cell culture, mTOR inhibitors (e.g., 
rapamycin) may increase cellular reprogramming, 
potentially by preventing cell senescence [34, 35]. The 
following gerostatics have been identified in cell culture: 
nutlin-3a, pan-mTOR inhibitors (such as Torins) and 
inhibitors of Mek, PI3K and S6K [33].

The number of potential combinations with 
rapamycin is enormous. All of them cannot be tested in 
mice. Yet, all of them do not need to be tested. I estimate 

the number of most important combinations as 200–300, 
for example, a combination of high doses of rapamycin 
and low doses of a pan-mTOR inhibitor [36] and/or low 
doses of mdm-2 and Mek inhibitors and various doses of 
common drugs such as metformin, acarbose, angiotensin 
II receptor blockers, aspirin and PDE-5 inhibitors. The full 
list of potential anti-aging combinations with rapamycin is 
beyond the scope of this editorial. 
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