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Pomalidomide-induced changes in the pancreatic tumor 
microenvironment and potential for therapy

Peter Storz

In pancreatic cancer, standard chemotherapy alone 
or its combination of with checkpoint inhibitors is largely 
ineffective, because the tumor microenvironment generates 
a fibrotic barrier for immunotherapy and for drugs to reach 
tumor cells. Current most promising efforts are strategies 
that combine chemotherapy with compounds that alter the 
tumor microenvironment. Here we discuss treatment with 
pomalidomide as a method to target immunosuppressive 
alternatively-activated tumor-associated macrophages, 
resulting in a decrease in fibrosis and formation of an 
immune-responsive environment. 

The pancreatic tumor microenvironment (TME) 
is an immunosuppressive, fibrotic barrier. It blocks the 
delivery of drugs that target tumor cells, but also excludes 
immune cells and prevents immunotherapy [1]. Major cell 
types in the TME are different populations of activated 
fibroblasts, and immune cells, including tumor-associated 
macrophages (TAMs). Alternatively-activated (M2) 
macrophages represent approximately 85% of TAMs in 
the pancreatic tumor microenvironment [2]. In pancreatic 
ductal adenocarcinoma (PDA) these macrophages 
regulate two hallmarks of immune escape, the exclusion 
of cytotoxic T lymphocytes and fibrosis [3, 4]. Both, 
either targeting immunosuppressive alternatively-
activated TAMs, or their repolarization to inflammatory 
macrophages, which drive destruction of the tumor stroma 
and presence of cytotoxic T cells, could be efficient 
strategies for this cancer [3-5]. 

Indeed, preclinical data indicate that neutralization 
of IL-13, a factor that mediates M2 polarization of 
macrophages, decreases the presence of alternatively-
activated macrophages, as well as fibrosis at pancreatic 
lesions [4]. In recent work, Bastea et al. now show that 
pomalidomide, a thalidomide analog that has been 
developed and tested for hematologic cancers [6], not only 
induces a decrease in alternatively-activated macrophages, 
which then results in decreased fibrosis at PanIN lesions 
and tumors, it also reprograms these populations into 
tumor suppressive macrophages [7]. 

Effects of pomalidomide on M2 macrophages are 
due to downregulation of interferon regulatory factor 
4 (IRF4), a transcription factor for M2 macrophage 
polarization. Through its effects on macrophage 
populations pomalidomide generates a pro-inflammatory 
environment by decreasing tissue levels of interleukin 1 
receptor antagonist (IL-1ra) and increasing Interleukin 

1α (IL-1α), with the net effect of activating interleukin 
1 receptor (IL-1R) signaling [7]. It had been shown 
previously that pancreatic tumors deficient of IL-1α have 
an immunosuppressive environment due to exclusion of 
cytotoxic T cells [8]. As expected, due to re-establishing 
IL-1R signaling, pomalidomide induced presence 
of activated (IFNγ-positive) CD4+ and CD8+ T cell 
populations [7]. This is in line with studies showing that 
in the pancreas shifting M2 to M1 populations orchestrates 
effective T cell immunotherapy [9]. In addition to its 
effects on immune cell populations, combination of 
pomalidomide with standard of care chemotherapy, 
recently had been shown to promote chemosensitization 
[10].

Above preclinical data, and the fact that 
pomalidomide and other thalidomide analogs are already 
FDA-approved drugs, makes them ideal candidates for 
clinical trials focusing on combination therapy with 
standard of care drugs or immunotherapy. A recently 
completed phase I clinical study showed that combination 
of pomalidomide with gemcitabine is feasible and safe 
for patients with untreated advanced carcinoma of the 
pancreas [11]. Potential side effects for human use of 
pomalidomide are minimal as only 2-4% of patients 
observed treatment-induced adverse events, which can 
be easily prevented by additional administration of an 
anticoagulant or aspirin. Pomalidomide/Gemcitabine 
therapy may be even more efficient when combined 
with other clinical approaches to target TAMs and 
immunosuppressive monocytes and sensitize pancreatic 
tumors to T cell immunotherapy such as inhibition of focal 
adhesion kinase, anti-PD1 therapy, of CD40 agonists, or 
targeting of CCL2 (reviewed in [1]). 

In summary the data of Bastea et al. [7] suggest 
that pomalidomide holds promise for pancreatic cancer 
therapy, by remodeling the tumor microenvironment and 
generating a shift from an immuno-suppressive to an 
immune-responsive environment (Figure 1).
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Figure 1: Pomalidomide-mediated changes in the pancreatic tumor microenvironment and potential for therapy. M2 
polarized, alternatively-activated TAMs drive fibrosis and generate an immunosuppressive environment, preventing efficient therapy. 
Pomalidomide induces a polarization switch from M2 to inflammatory M1 macrophages, and also drives the recruitment of activated 
cytotoxic T cells into the pancreatic TME. This leads to an immune-responsive TME, showing a decrease in fibrosis, but also and makes 
tumor cells more accessible for standard of care chemotherapy.
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