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ABSTRACT
Inactivating CDK12 alterations have been reported in ovarian and prostate 

cancers and may have therapeutic implications; however, the prevalence of these 
mutations across other cancer types is unknown. We searched the cBioPortal and 
GENIE Project (public release v4.1) databases for cancer types with > 200 sequenced 
cases, that included patients with metastatic disease, and in which the occurrence 
of at least monoallelic CDK12 alterations was > 1%. The prevalence of at least 
monoallelic CDK12 mutations was highest in bladder cancer (3.7%); followed by 
prostate (3.4%), esophago-gastric (2.1%) and uterine cancers (2.1%). Biallelic 
CDK12 inactivation was highest in prostate cancer (1.8%), followed by ovarian 
(1.0%) and bladder cancers (0.5%). These results are the first (to our knowledge) 
to estimate the prevalence of monoallelic and biallelic CDK12 mutations across 
multiple cancer types encompassing over 15,000 cases.

INTRODUCTION

Inactivating CDK12 alterations have been 
reported in ovarian and prostate cancers; however, the 
prevalence of these mutations across all cancer types 
is unknown [1]. While CDK12 was initially thought to 
be involved in homologous-recombination DNA repair, 
emerging data suggest a unique role of this gene in 
DNA replication-associated repair. To this end, it has 
been suggested that inactivating CDK12 mutations 
lead to widespread focal genomic duplications that 
generate gene fusion-induced neoantigens and favorable 
responses to immune-checkpoint blockade therapy 
using PD-1 inhibitors [2]. Given this potentially 
actionable molecular subtype, we sought to determine 
the prevalence of monoallelic and biallelic CDK12 
alterations across tumor types.

RESULTS

Datasets (in cBioPortal and GENIE) from prostate, 
breast, colorectal, bladder, ovarian, uterine, head-and-
neck squamous cell carcinoma, melanoma, and esophago-
gastric cancers were included (Table 1); other tumor types 
did not reach a 1% frequency of CDK12 alterations. The 
prevalence of at least monoallelic CDK12 mutations was 
highest in bladder cancer (3.7%); followed by prostate 
(3.4%), esophago-gastric (2.1%) and uterine cancers 
(2.1%). Biallelic CDK12 inactivation was highest in 
prostate cancer (1.8%), followed by ovarian (1.0%) and 
bladder cancers (0.5%) (Figure 1).

DISCUSSION

In the era of precision oncology, inactivation of 
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CDK12 may represent a new molecular subtype with 
therapeutic implications [6], although the pan-cancer 
prevalence of this genomic alteration was previously 
unknown. These results are the first (to our knowledge) 
to estimate the prevalence of monoallelic and biallelic 
CDK12 mutations across nine cancer types encompassing 
>15,000 cases. This is important as CDK12 alterations 
may be implicated in favorable responses to immune 
checkpoint inhibition, with biallelic alterations 
theoretically expected to respond better than monoallelic 
alterations. Prospective clinical trials (e.g. NCT03570619) 
are now needed to adequately assess this therapeutic 
hypothesis, and our data could be useful in the design of 
such trials.

Our results are limited to data that were publicly 
available. In addition, genotyping and mutation calling 
are sensitive to several factors, e.g. quality of the sample, 
sequencing depth and platform, and the pipeline used. 
Additionally, datasets from the GENIE Project revealed 
overall lower CDK12 mutation rates than datasets 
retrieved from cBioPortal. The reason for this is unclear 
but may include different pipelines with different 
sensitivity and specificity, artifacts due to DNA damage in 
sample preparation found in the capture-panels used in the 
GENIE Project, and differing sample quality (all samples 
from the GENIE Project were formalin-fixed paraffin-
embedded while most from cBioPortal were fresh-frozen 
samples) [3–5]. Because of this, we hypothesize that our 
reported prevalences are likely underestimates of the true 
frequency of these mutations. Nevertheless, our analysis 

suggests that there are at least nine cancer types with a 
CDK12 mutation prevalence between 1-4%, hopefully 
prompting further exploration of immunotherapy 
approaches using a basket-trial design. Given the recent 
FDA-approval of larotrectinib for NTRK-altered cancers 
regardless of histologic type, we envision a similar mode 
of clinical exploration for CDK12-altered tumors.

METHODS

We searched the cBioPortal [3,4] and GENIE 
Project (public release v4.1) [5] databases for cancer 
types with ≥200 sequenced cases, that included patients 
with metastatic disease, and in which the prevalence of at 
least monoallelic CDK12 alterations was ≥1%. Analyses 
were restricted to datasets containing both CDK12 
mutation and copy-number alteration (CNA) data using 
hybridization-capture panels from Dana-Farber Cancer 
Institute, Memorial Sloan-Kettering Cancer Center and 
Vanderbilt-Ingram Cancer Center. CDK12 mutations were 
considered inactivating (i.e. resulting in loss-of-function) 
in the case of homozygous loss, genomic rearrangements, 
frameshift or nonsense protein-truncating mutations, 
splice-site mutations, or missense mutations within the 
kinase domain. Monoallelic alterations were defined as 
at least one protein-truncating CDK12 variant; biallelic 
alterations were defined as a protein-truncating variant 
plus a second protein-truncating variant, a kinase domain 
missense variant, or loss-of-heterozygosity of the wild-
type CDK12 allele. All analyses were performed in R.

Figure 1: Prevalence of CDK12 mutations across 9 cancer types.
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Table 1: Datasets publically available from cBioPortal and GENIE Project that were used, by disease 
group, with overall sample size. 

Disease Dataset Sample Size Total

Bladder

BLCA_TCGA_PAN_CAN_ATLAS_2018 408

1,181

DFCI-ONCOPANEL-3 69
MSK-IMPACT341 95
MSK-IMPACT410 326
MSK-IMPACT468 143
UTUC_MSKCC_2013 84
VICC-01-T5A 3
VICC-01-T7 53

Breast

BRCA_IGR_2015 216

3,442

BRCA_MBCPROJECT_WAGLE_2017 157
DFCI-ONCOPANEL-3 304
MSK-IMPACT341 410
MSK-IMPACT410 1,021
MSK-IMPACT468 1,076
VICC-01-T5A 87
VICC-01-T7 171

Colorectal

CRC_MSK_2018 1,134

3,272

DFCI-ONCOPANEL-3 351
MSK-IMPACT341 209
MSK-IMPACT410 906
MSK-IMPACT468 465
VICC-01-T5A 47
VICC-01-T7 160

Esophagogastric

DFCI-ONCOPANEL-3 146

1,458

EGC_MSK_2017 341
ESCA_TCGA_PAN_CAN_ATLAS_2018 182
MSK-IMPACT341 122
MSK-IMPACT410 216
MSK-IMPACT468 106
STES_TCGA_PUB 288
VICC-01-T5A 11
VICC-01-T7 46

HNSCC

DFCI-ONCOPANEL-3 83

1, 010

HNC_MSKCC_2016 151
HNSC_TCGA_PAN_CAN_ATLAS_2018 517
MSK-IMPACT341 37
MSK-IMPACT410 132
MSK-IMPACT468 75
VICC-01-T5A 6
VICC-01-T7 9
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