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ABSTRACT:
SOX genes are transcription factors with important roles in embryonic 

development and carcinogenesis.  The SOX family of 20 genes is responsible for 
regulating lineage and tissue specific gene expression patterns, controlling numerous 
developmental processes including cell differentiation, sex determination, and 
organogenesis.  As is the case with many genes involved in regulating development, 
SOX genes are frequently deregulated in cancer.  In this perspective we provide a 
brief overview of how SOX proteins can promote or suppress cancer growth.  We 
also present a pan-cancer analysis of aberrant SOX gene expression and highlight 
potential molecular mechanisms responsible for their disruption in cancer.  Our 
analyses indicate the prominence of SOX deregulation in different cancer types and 
reveal potential roles for SOX genes not previously described in cancer.  Finally, we 
summarize our recent identification of SOX15 as a candidate tumor suppressor in 
pancreatic cancer and propose several research avenues to pursue to further delineate 
the emerging role of SOX15 in development and carcinogenesis.

INTRODUCTION

SOX genes (SRY-related high mobility group 
(HMG) box) encode a family of transcription factors 
containing the DNA binding domain of SRY, the first SOX 
gene identified [1-3]. The twenty different SOX proteins 
identified in mammals to date can be subdivided into 8 
groups (A-H) based on similarities in HMG box domains, 
gene structure, and the presence of specific functional 
domains including coiled-coil, transactivation and 
transrepression domains [2, 4]. Depending on the domains 
present and their specific binding partners, SOX proteins 
can either activate or repress the expression of target 
genes in a tissue-specific manner [1, 2, 5, 6]. Through 
their lineage-specific modulation of gene expression, 
SOX proteins are involved in embryonic development, 
regulating processes such as cell differentiation, 
maintenance of stemness, sex determination, and 

development of the central nervous, haematopoietic and 
other organ systems [1, 2, 5]. As SOX members are critical 
regulators of cellular programming, it is not surprising that 
disruption of these genes has been implicated in several 
human diseases including cancer [1, 2, 7]. 

Roles of SOX proteins in cancer and cancer-
associated pathways

Embryonic development is a tightly regulated 
process involving differentiation of cells into specialized 
cell types and rapid cell growth. It is well established 
that numerous genes and pathways with essential roles 
in development are frequently disrupted to promote 
carcinogenesis, which itself is characterized by aberrant 
cell proliferation and/or differentiation. The disruption of 
SOX proteins in various malignancies is a case in point. 
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Oncogenic and suppressive roles of SOX proteins 
in tumorigenesis

SOX family members may act as oncogenes, tumor 
suppressor genes, or both depending on the cellular 
context, and can be activated or inactivated through a 
variety of genetic and epigenetic mechanisms including 
DNA copy number alterations, DNA methylation 
changes and aberrant miRNA expression [1, 2, 8, 9]. For 
example, in squamous esophageal, non-small cell and 
small cell lung cancers, SOX2 acts as an oncogene and 
is activated through DNA amplification [10, 11]. SOX2 
promotes cell proliferation, anchorage independent 
growth and is capable of transforming transbronchial 
epithelial cells [10, 11]. SOX9 is another example of an 
oncogenic SOX protein that is overexpressed in multiple 
cancer types including colorectal, glioma, and pancreatic 
cancers [12-14]. In contrast, SOX7 is downregulated 
via DNA deletions and methylation silencing, acting as 
a tumor suppressor gene in prostate, colon, lung, and 
breast cancers through its involvement in cell death, 
movement, invasion and proliferation [15, 16]. SOX4 
appears to have a context-dependent role in cancer as 

it is upregulated and promotes growth of leukemia, 
colorectal, lung and breast cancers, but is underexpressed 
and suppresses growth of bladder and liver cancers [9]. 
SOX4 is disrupted through DNA copy gains, epigenetic 
changes involving DNA methylation and miRNAs, and 
sequence mutations [8, 9]. It mediates its oncogenic 
function via several mechanisms including suppression of 
apoptosis, promotion of metastasis, and maintenance of 
cancer-initiating cells. Similar to SOX4, SOX2 and SOX9 
have also been shown to have tumor suppressive effects 
in specific cancer types (gastric cancer and melanoma, 
respectively), further emphasizing the context specific 
nature of SOX involvement in carcinogenesis [17, 18]. 
The differing actions of SOX proteins in cancer cells of 
various origins and genetic backgrounds likely underlie 
the disparate behaviors of SOX proteins in promoting or 
inhibiting tumor growth [9]. 

SOX gene disruption in various cancer types

Not surprisingly given the known involvement of 
SOX members in cancer biology, a pan-cancer analysis 
of SOX expression using publically available RNA-

Figure 1: Pan-cancer analysis of SOX gene expression levels. Processed Cancer Genome Atlas (TCGA) SOX family gene 
expression data for tumor and non-malignant tissues from 11 different cancer types was downloaded from the UCSC Cancer Genomics 
Browser (https://genome-cancer.ucsc.edu/) [92]. The number of tumor samples for each cancer type is indicated in brackets. Gene 
expression was classified as over- or underexpressed in individual tumors if tumor expression was at least 2-fold more or less than the 
average expression of available tissue matched non-malignant samples, and the frequency of expression changes across tumors of each 
type was calculated. Darker coloration indicates a higher frequency of alteration as indicated in the legends below each heatmap, with 
underexpression depicted on the left in red and overexpression on the right in blue. Genes were considered recurrently, aberrantly expressed 
within a particular cancer type if they exhibited a 20% or greater frequency in disruption. Cancer types are annotated as follows: BLCA - 
bladder urothelial carcinoma; BRCA - breast invasive carcinoma; COAD - colon adenocarcinoma; HNSC - head and neck squamous cell 
carcinoma; KIRC - kidney clear cell carcinoma; LUAD - lung adenocarcinoma; LUSC - lung squamous cell carcinoma; PRAD - prostate 
adenocarcinoma; STAD - stomach adenocarcinoma; THCA - thyroid carcinoma; UCEC - uterine corpus endometrioid carcinoma.
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sequencing data for 11 cancer types from The Cancer 
Genome Atlas (TCGA, http://cancergenome.nih.gov) 
revealed that SOX genes are frequently deregulated in 
several human malignancies (Figure 1, Supplemental 
Table 1). These results corroborate numerous reports of 
aberrant SOX gene disruption in various cancer types 
such as overexpression of SOX2 in lung squamous cell 
carcinoma [8], low expression of SOX10 in epithelial-
derived carcinomas [19], as well as overexpression of 
SOX4 and SOX11 and underexpression of SOX7 and 
SOX17 in a variety of cancer types [1, 2, 9, 10, 16-18, 
20-54]. Our analysis also identified deregulated SOX 
genes such as SOX12 and SOX30, which have not been 
well characterized in the context of cancer, suggesting 
these genes may be worthwhile candidates for further 
investigation. Many of these RNA expression changes 
have also been demonstrated at the protein level as evident 
in the Human Protein Atlas (e.g. SOX4, SOX7, SOX10, 
SOX17) [55].

The most recurrently deregulated SOX genes, 
arbitrarily defined here as having a minimum 20% 
frequency of deregulation in at least 9 of the 11 different 
cancer types, included underexpression of SOX2 (10/11), 
SOX5 (10/11), SOX6 (10/11), SOX7 (9/11), and SOX10 
(11/11) and overexpression of SOX4 (10/11), SOX11 
(9/11), and SOX12 (9/11) (Figure 1, Supplemental Table 
1). Interestingly, although it has been suggested that SOX 
genes are predominantly oncogenic in cancer and we 
found that many were overexpressed [8], we also observed 
recurrent underexpression of SOX genes in tumors relative 
to matched non-malignant tissues. In the 11 TCGA 
cancer types we considered, 13/20 SOX genes showed 
transcriptional downregulation (≥20%) whereas only 
5/20 showed recurrent upregulation (≥20%) in at least 5 
cancer types. Of the 13 recurrently underexpressed SOX 
genes, SOX3, SOX5, SOX7 and SOX10 were exclusively 
underexpressed (i.e. they showed overexpression 
frequencies <20% in all cancer types). We speculate that 
the prominence of SOX underexpression may be due to the 
functional redundancy of individual SOX genes [5, 7], as 
loss of function could require inactivation of multiple SOX 
family members. For example, SOX5 and SOX6, members 
of the SOXD family, were frequently underexpressed 
concurrently in several cancer types (Figure 1). Most 
SOX genes were either over- or underexpressed within 
individual cancer types, though some exceptions were 
evident. SOX2 and SOX9 both exhibited frequent over- and 
underexpression within the same cancer type, potentially 
indicating their dual roles in cancer and that they could be 
differentially selected for in cells with different genetic 
backgrounds. The SOX genes least often disrupted at the 
expression level were SOX14, SOX3, and SRY. 

As mentioned above, several genetic and epigenetic 
mechanisms have been associated with aberrant SOX 
expression in cancer. A similar pan-cancer investigation 
of TCGA genomics data for the same tumor types 

revealed that SOX genes are recurrently disrupted 
through copy number and methylation changes, and 
infrequently by sequence mutations (Supplemental Table 
1). DNA amplifications were more frequent than deletions, 
while DNA hypermethylation was more frequent than 
hypomethylation at SOX gene loci. It is possible that these 
DNA-level changes underlie the prominent SOX gene 
deregulation we observed, although we acknowledge 
that additional mechanisms likely contribute to SOX 
expression as well. The prevalence of DNA and RNA 
alterations affecting SOX genes in various tumor types is 
strong evidence of their importance to cancer biology.

Malignant phenotypes and cellular pathways 
modulated by SOX members in cancer

As described above, SOX proteins can contribute to 
the malignant phenotype through their abilities to regulate 
numerous cancer hallmarks including cell proliferation, 
apoptosis, survival, invasion, migration, differentiation, 
stemness, senescence, and angiogenesis [1, 2, 8, 9, 56]. 
In the context of cancer biology, Wnt/β-catenin signaling 
is the most well documented cellular pathway affected by 
SOX proteins. This pathway plays important roles in the 
development of multiple organs and is aberrantly activated 
in several cancers, driving both cell proliferation and 
metastasis [57, 58]. Activation of the Wnt pathway results 
in liberation of β-catenin from a cytoplasmic inhibitory 
complex, enabling it to translocate to the nucleus and bind 
to TCF, recruit transcriptional co-activators and stimulate 
expression of Wnt target genes. Numerous reports have 
demonstrated that SOX proteins positively (e.g. SOX2 
and SOX4 in breast and colon cancers, respectively) or 
negatively (e.g. SOX9, SOX7, and SOX17 in colorectal 
cancer) regulate Wnt-mediated transcriptional activity 
through a variety of mechanisms, including: binding with 
β-catenin to prevent TCF from interacting with β-catenin, 
interacting with TCFs directly to inhibit them from 
binding β-catenin, competitive binding with TCF proteins 
for DNA sites, recruitment of transcriptional repressors or 
activators, stabilization of TCF repression, or promotion 
of β-catenin degradation [59, 60]. Interestingly, some 
SOX members (e.g. SOX21 and SOX9) have also been 
implicated in non-canonical Wnt signaling due to their 
modulation of planar cell polarity signaling (PCP), which 
is known to contribute to tumor progression and metastasis 
[61-64]. Work exploring the involvement of SOX proteins 
in cancer through their effects on PCP may provide 
additional insights into how SOX disruption promotes 
aggressive tumor phenotypes.

In addition to the Wnt/β-catenin pathway, SOX 
family members also have established roles in other 
developmental pathways including the Notch, Sonic 
Hedgehog, and Hippo pathways [5, 7, 65-68]. SOX 
genes can affect these pathways at both upstream (i.e. 
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pathway stimulation) and downstream (i.e. transcriptional 
activity) levels, through transcriptional regulation of genes 
encoding pathway proteins or target genes, respectively. 
Figure 2 demonstrates known interactions between SOX 
proteins and developmental pathways implicated in 
carcinogenesis. SOX1 exhibits downstream regulation 
of the Notch pathway in neural progenitor cells by 
binding to the gene promoter of the HES1 transcription 
factor, repressing its transcription, thereby mitigating 
Notch signaling and promoting neuronal differentiation 
[69]. In contrast, through its transcriptional activation of 
HES1, SOX1 is involved in promoting the switch from 
neurogenesis to gliogenesis in the ventral spinal cord [70]. 
In the Hedgehog pathway, SOX9 and SOX2 partner with 
GLI transcription factors, the downstream effectors of 
Hedgehog signaling to activate expression of transcription 
factors required for cartilage development and spinal cord 
neural progenitor cells, respectively [65-67]. A similar 
example is evident in the regulation of organogenesis via 
the Hippo pathway, where SOXC factors (SOX4, SOX11, 
and SOX12) control the expression of the transcriptional 

mediator of the pathway, TEAD2 [71]. In the brain, SOX2 
regulates the expression of sonic hedgehog (SHH), whose 
corresponding protein stimulates the Hedgehog signaling 
cascade; this example of upstream regulation is important 
for stem cell maintenance in brain development [72]. 

Discovery of SOX15 as a potential tumor 
suppressor in pancreatic cancer

We recently identified SOX15 (also known 
as SOX20) as a potential tumor suppressor gene 
negatively associated with the Wnt/β-catenin pathway 
in pancreatic ductal adenocarcinoma (PDAC) [45]. A 
multi-dimensional, integrative genomic analysis of 20 
PDAC cell lines revealed SOX15 was inactivated as a 
result of multiple molecular mechanisms. We observed 
recurrent two-hit inactivation, defined as concurrent 
copy number loss and DNA hypermethylation associated 
with underexpression within an individual sample, 
in 45% of the cell lines assessed. Our observation of 

Figure 2: Involvement of SOX proteins in various developmental pathways that have been associated with tumorigenesis. 
SOX members are involved in regulating several signaling pathways relevant to tumorigenesis, including the Wnt, Hedgehog, Notch, and 
Hippo pathways. (A) In the Wnt pathway, SOX proteins can bind β-catenin or TCF/LEF to either promote or suppress Wnt mediated 
transcriptional activity. (B) In the Hedgehog pathway, SOX proteins act upstream to control the expression of sonic hedgehog (Shh) and 
downstream through interaction with GLI to promote transcription of pathway target genes. (C) In the Notch and Hippo pathways, SOX 
proteins bind with other factors to control expression of their transcription factor effectors, HES1 and TEAD2, respectively.
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SOX15 disruption was consistent with Knudson’s two-hit 
hypothesis for tumor suppressor gene inactivation [73]. 
Following validation of SOX15 downregulation in clinical 
PDAC tumors, we performed experiments demonstrating 
that SOX15 exerts tumor suppressor properties in vitro 
and in vivo. Specifically, re-expression of SOX15 in 
PDAC lines with undetectable endogenous levels resulted 
in significantly reduced cell viability and tumor growth 
[45]. To deduce a potential mechanism through which 
SOX15 may exert its tumor suppressive effects, we turned 
our attention to the Wnt pathway since other SOX family 
members are known to regulate Wnt/β-catenin signaling 
and our pathway analysis suggested a potential role for 
SOX15 in this pathway. Multiple different assays revealed 
that SOX15 expression was associated with a modest 
but consistent reduction in Wnt pathway activity. Taken 
together, our findings provide novel evidence of the 
involvement of yet another SOX family member in the 
process of carcinogenesis.

The role of SOX15 in developmental and cancer 
biology

The role of SOX15 in cell biology and development 
is relatively understudied compared to other SOX family 
members, such as SOX2, SOX4 and SOX9. Early work 
demonstrated SOX15 expression in fetal brain, spinal cord, 
thymus, heart and adrenal tissues as well as in adult brain, 

lung, heart, liver, spleen, gut, small intestine, kidney, 
and testes tissues [74]. Knockout studies revealed that 
SOX15-null mice and embryonic stem cells are viable and 
grossly normal, perhaps suggesting functional redundancy 
with other SOX members [5, 7, 75, 76]. However, 
manipulation of SOX15 levels in mice results in muscular 
abnormalities, implicating SOX15 in the regulation of 
skeletal muscle development [75, 77-79]. More recent 
studies have suggested that SOX15 is a potential mediator 
of pluripotency and stemness due to its upregulation 
in induced pluripotent and embryonic stem cells and 
mesodermal progenitor cells [80, 81].

In cancer, SOX15 overexpression was found to 
inhibit the proliferation of human testicular embryonic 
carcinoma cells [82]. This negative regulation of cancer 
cell proliferation is consistent with our results of SOX15 
expression reducing tumor growth, providing additional 
evidence of a potential suppressor role for SOX15 in 
tumorigenesis. Further supporting this concept, our pan-
cancer analysis of SOX15 gene expression showed it was 
recurrently downregulated in multiple cancer types with 
high frequencies of disruption (≥ 80%), including colon, 
stomach, prostate, and uterine cancers (Figure 3). In 
contrast, SOX15 appeared to be frequently overexpressed 
in lung adenocarcinoma and squamous cell carcinoma, 
potentially exemplifying the tissue-specific dependency of 
SOX gene expression and function (Figure 3). Collectively, 
our pan-cancer expression analysis and functional 
validation of SOX15 in PDAC, suggests that SOX15 may 
be involved in multiple cancer types.

SOX15: Where do we go from here?

Much remains to be learned about SOX15 function 
in development, cell differentiation, and cancer. While 
we demonstrated a role for SOX15 in regulation of the 
Wnt/β-catenin pathway in PDAC, we acknowledge that 
the moderate suppression of Wnt activity does not reflect 
the large effect SOX15 expression had on inhibition of 
tumor growth, suggesting SOX15 may function through 
additional cellular pathways to mediate its inhibitory effect 
[45]. Moreover, since many SOX members have various 
roles in different cellular programs, it is possible that 
SOX15 is involved in normal biological processes other 
than just muscle development [5, 7]. We suggest three 
key avenues of research should be undertaken to elucidate 
novel roles of SOX15 in cell and developmental biology; 
these include identification of SOX15 transcriptional 
targets, understanding SOX15 expression patterns and 
transcriptional regulation, and identification of protein 
interacting partners. 

Perhaps the most informative strategy for identifying 
novel SOX15 functions is to determine what genes it 
regulates (i.e. SOX15 target genes), appreciating that this 
may be cell-and tissue-dependent. A similar approach was 
recently used to infer the biological functions of SOX11 

Figure 3: SOX15 expression status in various cancer 
types. Frequency of SOX15 over- and underexpression in 11 
cancer types, illustrating SOX15 is predominantly underexpressed 
in cancer with the exception of lung adenocarcinoma (LUAD) 
and squamous cell carcinoma (LUSC), in which it is frequently 
overexpressed. Cancer types are annotated as follows: BLCA - 
bladder urothelial carcinoma; BRCA - breast invasive carcinoma; 
COAD - colon adenocarcinoma; HNSC - head and neck 
squamous cell carcinoma; KIRC - kidney clear cell carcinoma; 
LUAD - lung adenocarcinoma; LUSC - lung squamous cell 
carcinoma; PRAD - prostate adenocarcinoma; STAD - stomach 
adenocarcinoma; THCA - thyroid carcinoma; UCEC - uterine 
corpus endometrioid carcinoma.
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in mantle cell lymphoma and SOX2 in glioblastoma 
multiforme [83, 84]. SOX15 target genes could be 
revealed using a combination of approaches such as 
chromatin immunoprecipitation coupled with sequencing 
(ChIP-seq) to identify SOX15 DNA binding sites, and/or, 
genome wide expression profiling following manipulation 
of SOX15 levels to identify genes whose expression is 
strongly correlated to that of SOX15. We employed the 
latter approach to find cellular pathways associated with 
SOX15 in our PDAC study, and identified the Wnt and 
ERK5 signaling pathways as candidates for SOX15 
regulation [45]. Although findings from genome wide 
approaches must be validated, they provide an excellent 
starting point for the identification of novel target genes.

Determining the spatial and temporal patterns 
of SOX15 expression throughout development will be 
extremely informative for identifying roles of SOX15 in 
developmental biology. Mapping of protein expression 
throughout mouse organogenesis provided insights into 
the role of SOX13 in multiple developmental processes, 
and this approach is a logical next step to further our 
understanding of SOX15 function [85]. Moreover, 
deciphering how SOX15 is transcriptionally regulated and 
understanding what cellular pathways or signals activate 
SOX15 gene expression could also reveal novel insights 
into its function. Evidence suggests that SOX gene 
expression can be controlled autonomously by other SOX 
factors, or regulated epigenetically, for example through 
DNA methylation or micro-RNA (miRNA) expression [5, 
15, 17, 45, 80, 86, 87]; thus, knowing the biological roles 
of miRNAs governing SOX15 expression could possibly 
shed light on SOX15 function. We also do not overlook 
the possibility that post-translational modifications may 
play an important role in mediating SOX15 behavior, as 
has been observed for SOX2 [5]. 

Lastly, it is well documented that the activity of 
SOX transcription factors is highly dependent on the 
proteins they partner with to exert their effects [88, 89]. 
SOX proteins may bind with completely different proteins 
or other SOX members. SOXB1/C/F members bind to 
heterologous transcription factors; for example, SOX2 
partners with OCT4 (also known as POU5F1) to maintain 
embryonic stem cell pluripotency [90]. On the other hand, 
SOX5 and SOX6 can dimerize and this binding enhances 
their ability to bind DNA [88, 91]. The finding of SOX 
proteins binding downstream protein components of the 
Wnt pathway (e.g. TCF or β-catenin) would implicate their 
involvement in Wnt signaling. Thus, clues about SOX15 
function could come from discerning its protein binding 
partners using a variety of high throughput proteomic or 
immunoprecipitation strategies.

CONCLUSIONS

The reports of SOX transcription factors in the 
literature emphasize the critical roles SOX genes play 

in developmental and cancer biology. While some SOX 
proteins are well studied, we have barely scratched the 
surface in understanding the biological functions of 
many others, especially in the context of malignancy. 
Nevertheless, due to their regulation of stemness, 
pluripotency, developmental pathways, and numerous 
cancer processes, it is clear that SOX members are 
integral contributors to cancer biology. We have provided 
a snapshot of SOX deregulation in a variety of cancer 
types, revealing that SOX expression patterns are broadly, 
aberrantly expressed in cancer, heightening interest in 
several SOX members that are recurrently disrupted 
but have not yet been studied in carcinogenesis. We 
also summarized our recent finding of the relatively 
understudied SOX member, SOX15, as a potential tumor 
suppressor gene frequently inactivated in pancreatic 
cancer. Further work to study this gene in different 
cancer types and to elucidate additional mechanisms 
through which it may function is required to gain a better 
understanding of SOX15’s physiological role in normal 
and diseased states, and could lead to the development of 
novel cancer therapeutic strategies [2].
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