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Damaged mitochondria in Fanconi anemia – an isolated event 
or a general phenomenon?
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ABSTRACT:
Fanconi anemia (FA) is known as an inherited bone marrow failure syndrome 

associated with cancer predisposition and susceptibility to a number of DNA damaging 
stimuli, along with a number of clinical features such as upper limb malformations, 
increased diabetes incidence and typical anomalies in skin pigmentation. The proteins 
encoded by FA-defective genes (FANC proteins) display well-established roles in DNA 
damage and repair pathways. Moreover, some independent studies have revealed 
that mitochondrial dysfunction (MDF) is also involved in FA phenotype. Unconfined 
to FA, we have shown that other syndromes featuring DNA damage and repair 
(such as ataxia-telangiectasia, AT, and Werner syndrome, WS) display MDF-related 
phenotypes, along with oxidative stress (OS) that, altogether, may play major roles 
in these diseases. Experimental and clinical studies are warranted in the prospect 
of future therapies to be focused on compounds scavenging reactive oxygen species 
(ROS) as well as protecting mitochondrial functions.

Independent studies have identified MDF in FA [1-
6], an inherited bone marrow failure (BMF) syndrome 
associated with DNA damage and repair (DDR) pathways, 
along with susceptibility to non-lymphocytic leukemias 
and other malignancies, and other clinical complications 
such as diabetes and malformations [7,8]. FA represents 
a unique model disorder that raised general attention in 
the last decade since it was discovered that one of the 
encoded proteins by the FA subgroup D1 (FANCD1) was 
identical with the breast cancer-related BRCA2 gene [9]. 
The current state of knowledge on FA pathway relies on at 
least 16 genes corresponding to the FA genetic subgroups 
FA-A, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, 
-P and -Q [8,10]. When any of those genes is biallelically 
mutated, except for the X-linked FANCB, the FA disease 
occurs. The FA pathway is recognized to protect and 
regulate DNA from interstrand crosslinks [10-12]. Most 
of the mutations in the FA pathway inactivate a nuclear 
FA core complex, consisting of proteins FANCA, -B, 
-C, -E, -F, -G, -L, and -M and at least four FA-associated 

proteins, FAAP16, FAAP20, FAAP24, and FAAP100. 
The main known function of the FA core complex is to 
monoubiquitinate chromatin complex of two other FA 
proteins, FANCD2 and FANCI upon DNA damage [13-
15]. Inactivation of the FA core complex does not allow 
monoubiquitination of FANCD2-FANCI, leading to a 
defect in downstream DNA repair signaling, consisting 
of FANCD1/BRCA2, FANCJ/BRIP1/BACH1, FANCN/
PALB2, FANCO/SLX4, and FANCP/RAD51C. The 
ubiquitinated FANCD2 recruits ubiquitin zinc finger 
domain-containing DNA repair proteins such as FAN1, 
FANCP (SLX4), TLS polymerases eta and finally mediates 
DNA homologous recombination together with RAD51 
and BRCA1 [16-24].

Another line of studies, dating back to 1980’s, 
has provided consistent evidence for a role of OS in FA 
phenotype, such as excess oxygen sensitivity [25-27], in 
vitro and in vivo accumulation of oxidative DNA damage 
[28,29], and other anomalies of redox endpoints [30]. 
Most notably, direct implications of FANC proteins in 



Oncoscience288www.impactjournals.com/oncoscience

redox pathways have been reported. The FANCC protein 
was found to be associated with redox-related activities, 
namely NADPH cytochrome P450 reductase [31,32] and 
GST [32]. The FANCG protein interacts with a P450 
protein, cytochrome P450 2E1 (CYP2E1) [34], an activity 
also known to be involved in redox biotransformation of 
xenobiotics including, e.g., MMC [35,36]. The FANCA 
and FANCG proteins were found to respond to redox state 
in terms of physical structure related to their ability to 
form disulphide bonds in the FA protein complex. Thus, 
FANCA, FANCC and FANCG were found to interact with 
redox state, also accounting for excess MMC sensitivity 
[31-37]. A set of independent studies showed implications 
of BRCA1 (FANCD2) with OS. Dziaman et al. reported 
excess oxidative DNA damage in breast and ovary cancer 
patients with defective BRCA1 vs. cancer-free BRCA1 
carriers and vs. control donors [38]. Another study by 
Li et al. showed functional interaction of FANCD2 and 
the forkhead transcription factor forkhead box O 3a 
(FOXO3a), which colocalized with FANCD2 foci in 
response to OS; the authors suggested that interacting 
FANCD2/FOXO3a contribute to cellular antioxidant 
defense [39,40]. 

Consistent with the links of FA phenotype – and 
of FA proteins - with OS, and given the well-established 
relationships between redox pathways and MDF, a 
set of independent studies revealed that mitochondria 
are actually involved in FA phenotype, from the 
observation that FANG localizes to mitochondria [2]. 
Major mitochondrial functions were found significantly 
altered in FA cells of genetic subtypes A, C, D2 and 
G, namely ATP production, mitochondrial membrane 
potential (∆Ψ), mitochondrial ultrastructure, defective 
mitochondrial peroxiredoxin-3, and oxygen consumption 
[1-3]; these malfunctions were not found in corrected 
FA cells. Another study, conducted on transcripts from 
bone marrow cells from FA patients vs. healthy donors, 
found that genes involved in mitochondrial bioenergetic 
pathways, i.e. Krebs cycle and electron transport chain 
were significantly down-regulated, approximately by 1.5- 
to 2-fold [4]. These findings, both arising from freshly 
drawn bone marrow cells and from lymphoblastoid cells 
or fibroblasts, point to an in vivo occurrence of MDF in FA 
patients, unconfined to FA cell cultures [1-4].

A possible scenario may be suggested for FA-
associated MDF and OS: normal cell conditions 
undermine that mitochondria actively synthesize ATP 
(State 3) and the rate of electron transport is accelerated 
upon transferring ADP, phosphate and protons across the 
inner membrane. In that state almost 90% of oxygen is 
consumed by the respiratory chain and is reduced to water. 
One may assume that oxidative damage is accumulated 
in FA cells thus resulting in MDF and affecting both ATP 
production and cellular respiration. This state moves the 
majority of FA mitochondria toward semi-resting state 
(State 4), where ATP production is defective and the 

rate of oxygen consumption is low. All these events may 
result in mitochondrial abnormalities [1]. Our recent data, 
from six FA patients as reported in Appendix I, showed 
down-regulation of several mitochondrial genes in cells 
from FA patients, confirming an involvement of MDF in 
FA phenotype (Fig. 1). Among those genes, nicotinamide 
nucleotide transhydrogenase (NNT) may play a role in 
detoxifying ROS as it was found that NNT knockdown 
resulted in impaired redox potential and increased ROS 
levels [41]. NNT may control ROS level and cellular redox 
state by replenishment of GSH antioxidant systems and 
mitochondrial repair enzymes (thioredoxin, glutaredoxin, 
peroxiredoxins and phospholipid hydroperoxidase) and 
contribute to maintainence of the mitochondrial membrane 
potential through generation of a proton gradient [42,43].

An involvement of OS and MDF in FA phenotype, 
far from being unique, is recognized for other disorders, 
including mitochondrial and other genetic diseases, as well 
as an extensive number of diseases pertaining to a broad 
range of medical disciplines, and involving mitochondrial 
damage to cells of, e.g., brain, heart, liver, blood, kidney, 
lung, and eye, as reviewed recently [5,6,44,45]. Table 
1 shows a selection of cancer-prone and/or progeric 
genetic diseases, suggesting that they share clinical and 

Figure 1: Downregulation of mitochondrial genes in 
FA patients. Total RNA isolated from peripheral blood of 6 
Fanconi anemia patients from Andhra Mahila Sabha Hospital, 
Chennai, or from individuals with no symptoms of FA, was 
amplified using Express Art mRNA amplification kit micro 
version (Artus GmbH, Germany), labeled with Cy3 Post-
Labeling Reactive Dye Pack (GE Healthcare UK limited, UK), 
fragmented and purified using Express Art Amino allyl mRNA 
amplification kit and YM10 columns (Millipore, USA). 10.0 
mg of the labeled amplified RNA was used for hybridization 
with the Human 40K (A+B) OciChip array. Hybridization was 
performed using automated hybstation HS 4800. Hybridized 
chips were scanned using Affymetrix 428TM  array scanner 
at three different PMT gains. Differentially expressed genes 
were filtered and the results represent the most downregulated 
mitochondrial genes. A threshold log fold change (LFC) of 3.0 
was fixed to attain FDR of less than 0.05.  
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Table 1: DDR-related diseases have elevated ROS and share phenotypes with mitochondria-related disorders (MRD)
DDR disease Phenotypes common for MRD ROS and mitochondrial involvement Ref. 

Ataxia-
Telangiectasia 
(A-T or Louis–Bar 
syndrome)

Impaired immunity, increased incidence of cancer, 
delayed onset or incomplete pubertal development, early 
menopause, slowed rate of growth, dysarthria, diabetes, 
premature changes in hair and skin;

Intrinsic mtDNA repair defects; mitochondrial 
requirement for ATM activation by extranuclear 
OS;

45-48

Bloom syndrome 
(BS or Bloom–
Torre–Machacek 
syndrome)

Deficiency in certain immunoglobulin classes, 
hypogonadism, premature cessation of menses, chronic 
lung problems, diabetes, and learning disabilities, mental 
retardation;

Increased ROS production,
mutations in energy metabolism gene PKM2,  
loss of mitochondrial membrane potential.

49-51

de Barsy syndrome Musculoskeletal, neurological abnormalities, cataracts, 
short stature, dystonia, premature aging mutations in mitochondrial enzyme PYCR1 52

Cockayne 
syndrome

Growth failure, impaired development of the nervous 
system, photosensitivity, premature aging, hearing loss 
and eye abnormalities

Deficiency in mitochondrial repair of 
8-oxoguanine; 
Cockayne syndrome (B) protein promotes 
mtDNA stability; high ROS level;

53-56

Cerebral palsy 
(CP)

Disorders of the development of movement, epilepsy, 
apraxia, dysarthria, intellectual and learning disabilities, 
urinary incontinence, metabolic and cognitive 
dysregulation

Sensitivity to ROS,
mitochondrial myopathies due to NADH 
dehydrogenase deficiency, generation of 
superoxide;

57-59

Cornelia de Lange 
syndrome (CdLS)

Growth and mental retardation, gastrointestinal disorders, 
brain abnormalities and hypertrophic cardiomyopathy;

Mutated mitochondrial ribosomal protein 
MRPS22, OXPHOS complex I, III and IV 
deficiency;

60

Fanconi anemia 
(FA)

Growth retardation, diabetis, metabolic disorders, 
immunoresponse impairment

Some FA proteins are localized in mitochondria; 
high ROS and damaged mitochondria; 
accumulation of oxidized proteins in FA cells;

1-6,
25-40, 
61,62

Friedreich's ataxia
Loss of coordination,
vision and hearing impairment, diabetes, heart disorders Deficiency of a key encoded protein frataxin 

leads to mitochondrial iron overload; 63

Li–Fraumeni 
syndrome

Several kinds of cancer are involved; Increased oxidative metabolism 64,65

Von Hippel-Lindau Headaches, vision problems, high blood pressure, 
hyperglycemia

VHL may contribute to tumorigenesis through 
mitochondria-based action, stimulates 
mitochondrial oxidative phosphorylation 
complex biogenesis, increased sensitivity of 
HIF-1α;

63-68

Ligase IV (LIG4) Microcephaly, growth retardation, developmental delay, 
skin anomalies, immunodeficiency, diabetes;

Participation in mitochondrial metabolism; the 
key encoded protein Tdp1 participates in the 
repair of mt DNA

69-70

Nijmegen breakage 
syndrome (NBS) Microcephaly, short stature, immunodeficiency; Increased OS, defect in mitochondrial p53 

accumulation;
71

Retinoblastoma 
(Rb)

Deterioration of vision, faltering growth or delayed 
development;

Rb protein induces apoptosis directly at the 
mitochondria 72,73

Spinocerebellar 
Ataxia (SCAE) Epilepsy Mitochondria-mediated cell degeneration, MDF, 

OS 74,75

Severe combined 
immunodeficiency 
(SCID)

Defective antibody response, severe bacterial, viral, or 
fungal infections, lung disease Mitochondrial adenylate kinase 2 malfunction 76

Tuberous sclerosis 
complex (TSC)

Cardiac rhabdomyomas, epilepsy, mental retardation and 
autism, brain lesions;

Loss of Tsc1 is linked to MDF. Tdp1, a TSC 
gene, participates in the repair of mtDNA 77,78

Xeroderma 
pigmentosum (XP) Diabetes mellitus, variable immune deficiency; Abnormal ultrastructural changes in 

mitochondria, OS and MDF; 79,80

Wilms’ tumor 
(nephroblastoma) High blood pressure, diabetes insipidus Reduced aerobic energy metabolism 81,82

Werner Syndrome
(WS or progeria ) Cataracts, diabetes (type 2), heart and arterial disease 

Generation of mitochondrial ROS in the absence 
of WRN; 
 contribution of the WRN mutation in 
mitochondrial DNA to diabetes mellitus

83,84
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biochemical features both involving defective DNA 
repair (DDR), and revealing a direct evidence of MDF/
OS, including altered mitochondrial functions and/
or ultrastructure, higher ROS levels and imbalance of 
cellular bioenergetics pathways. Interestingly, many of the 
mitochondrial-related diseases (MRD) show involvement 
of DDR pathways (either at mtDNA or at nuclear DNA 
level). Altogether, this allows us to suggest a simplified 
scheme (Fig. 2), where ROS accumulated in DDR may 
equally affect and damage mitochondria and - at the same 
time – defects in mitochondria may provoke accumulation 
of ROS followed by OS and DNA damage. In other terms, 
in spite of different origins, these two classes of diseases 
may contribute to common – or analogous - phenotypes. 

It was a common stereotype that mitochondria 
were considered as organelles, only responsible for 
cellular energetic pathways. Conversely, only 3% of the 
genes necessary to make a mitochondrion are allocated 
for making ATP, whereas 97% are involved in the major 
metabolic pathways [85]. Mitochondria contain the 
rate-limiting enzymes for pyrimidine biosynthesis [85], 
heme synthesis [86], detoxification of ammonia in the 
urea cycle in the liver [87], cholesterol metabolism [88], 
neurotransmitter metabolism [89], free radical production 
and detoxification [90] and oxidative phosphorylation 
(OXPHOS) [91,92]. Not surprisingly, a mitochondrial 
basis to illness involves a number of neurologic and 
psychiatric disorders, malignancies, metabolic diseases, 
cardiovascular diseases, and autoimmune diseases [5,6,93-
100].

Cancer predisposition in DDR diseases is a well-
established fact and most of the DDR evolve various 
malignancies. Mitochondrial dysfunction has been also 
associated with a wide range of solid tumors, proposed 
to be central to the aging process, and found to be a 

common factor in the toxicity of a variety of xenobiotics 
[101]. An irreversible damage to OXPHOS leads to a 
shift in energy metabolism towards enhanced aerobic 
glycolysis in most cancers, thus mutations in mtDNA 
represent an early event during tumorigenesis. Due to the 
lack of introns, histones and limited repair mechanisms, 
mtDNA is more susceptible to mutations, including ROS-
dependent ones. Mutations in mtDNA can contribute to 
the development of breast [102] and colorectal cancers 
[103], leukemia [104] and hepatocellular carcinoma [105]. 
There are many reasons to believe that ROS, acting both 
as mutagens and cellular mitogens, may play a role in 
tumor progression, thus suggesting a possible new avenue 
for the development of a treatment to suppress metastasis. 
In this regard, natural antioxidants should be considered 
for mitochondria-oriented FA therapy (mitochondrial 
nutrients, such as α-lipoic acid and coenzyme Q10) [6]. 
Interestingly, several compounds used in the treatment 
of FA patients, whose mechanisms of action in FA are 
largely unknown (ouabain, curcumin, androgen analogs) 
were also used in the treatment of MRD, e.g. heart disease 
(ouabain), or AD (curcumin) [106-108]. In MRD, these 
agents are known to inhibit Na(+)/K(+)-ATPase (ouabain), 
influence mitochondrial oxidation of cholesterol 
(oxandrolone, oxymetholone), prevent membrane 
permeability transition in mitochondria (thus reducing 
ROS by increasing glutathione) [106-112]. Therefore, it 
is highly suggestive that the effects of the above drugs in 
FA are linked to mitochondrial-related ROS. In addition 
to inactivating ROS by antioxidants, another strategy is 
to use artificial uncoupling agents that decrease proton 
gradient and then ROS production [113]. Unfortunately, 
therapeutic window(s) between efficacy and toxicity of 
such agents is too narrow. In order “to widen” the window 
between antioxidant and prooxidant concentrations, novel 
conjugates of plastoquinone and penetrating cations have 
been recently suggested [114]. Clinical studies focusing 
on novel ROS-scavenging compounds as well as agents 
preventing mitochondria from accumulation of ROS are 
warranted in the prospect of future therapy.
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