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The taxonomy of brain cancer stem cells: what’s in a name?
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ABSTRACT:
With the increasing recognition that stem cells play vital roles in the formation, 

maintenance, and potential targeted treatment of brain tumors, there has been an 
exponential increase in basic laboratory and translational research on these cell types. 
However, there are several different classes of stem cells germane to brain cancer, 
each with distinct capabilities and functions. In this perspective, we discuss the types 
of stem cells relevant to brain tumor pathogenesis, and suggest a nomenclature for 
future preclinical and clinical investigation.

INTRODUCTION

Brain cancers are the leading cause of cancer-related 
death in children and the fourth leading cause in adults 
[1-3]. Among the diverse histologic varieties of brain 
tumors, gliomas (glial cell neoplasms) comprise the most 
common subtype. Gliomas (or astrocytomas) are classified 
according to an established set of pathological features 
that define the four different malignancy grades, including 
low-grade (grades I and II) and high-grade (grades III 
and IV) tumors [4]. Unfortunately, there are limited 
effective therapeutic options available for these cancers, 
and individuals with these brain tumors experience 
significant morbidity and mortality [5-6]. While traditional 
anti-cancer therapies aim to kill rapidly dividing cells, 
complementary treatment strategies involve blocking the 
function of other cell types present in brain tumors [7]. As 
such, non-neoplastic astrocytes [8], blood vessels [9], and 
immune system-like cells (microglia and macrophages; 
[10-11]) each have been shown to participate in an 
instructive manner in glioma formation and progression. 
Leveraging this innate cellular heterogeneity, numerous 
studies have sought to define the individual contributions 
of these various stromal cell types to tumor formation and 
growth, leading to new brain tumor therapies [12-16].

Similarly, over the past decade, there has been 
an explosion in the number of publications describing 
the role of another of these cell types (stem cells) in the 
pathogenesis of glioma [17-18]. These investigations 
have revealed important functions for stem cells in glioma 
development, maintenance, and tumor heterogeneity. 
Because of their involvement in brain cancer, these stem 

cells are often collectively referred to as “cancer stem 
cells”, despite the fact that they may have different tissue 
origins, functions, and contributions to glioma biology. To 
further complicate matters, the criteria used to define these 
cancer stem cells in glioma often differ from study to study, 
and variably include the ability to self-renew (generate 
new stem cells), the capacity to form neurospheres, the 
expression of “stem cell” markers, the ability to give rise 
to all three major central nervous system (CNS) cell types 
(oligodendrocytes, astrocytes, and neurons), the capacity 
to proliferate for prolonged periods of time in culture, and 
the ability to generate gliomas following implantation 
into the brains of immunocompromised rodents (Figure 
1). Herein, the definition of the cancer stem cell will be 
reviewed and an alternative nomenclature proposed to 
enable future experimental study and clinical application.

A matter of definition

The ability to develop consensus criteria for a 
“cancer stem cell” depends on which of the various stem 
cell populations we are describing. For this reason, it is 
important to distinguish between the particular stem cell 
subtypes relevant to glioma formation, maintenance, and 
progression. 

Glioma initiating stem cells (GISCs). 

Emerging evidence from numerous laboratories 
using a diverse collection of genetically-engineered 
mouse (GEM) models supports the notion that low-grade 
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and high-grade gliomas likely arise from neural stem cells 
(NSCs). These NSCs typically reside in germinal zones 
[19], such as the lateral ventricle subventricular zone (lv-
SVZ) [20-21], the third ventricle (TVZ) [22-24], and the 
fourth ventricle [25-26]. Even within these ventricular 
zones, there are discrete subregions and cell types most 
capable of giving rise to glioma following the introduction 
of glioma-causing genetic changes (mutations) [23, 27-
29]. In addition, some recent reports have suggested that 
not all gliomas arise from NSCs, such that gliomas can 
been initiated when astrocytes [30-31], oligodendrocyte 
progenitors [32-36], and even neurons [37] are targeted 
in experimental mouse model systems. While these more 
differentiated cell types do generate gliomas under specific 
conditions, it is not clear whether gliomagenesis requires 
a reversion to a more progenitor-like (stem cell) state 
from which glioma formation ensues [38]. Studies, such 
as those involving lineage tracing methods [33, 39], may 
help to resolve these issues. Nonetheless, glioma-initiating 
cells should have the same functional properties as the 
stem cells that normally reside in these germinal zones. 

Glioma maintaining stem cells (GMSCs). 

From fully-formed human glioma specimens, cells 
have been isolated with properties typically attributed to 
stem cells [40-42]. In the case of high-grade gliomas, these 
cancer stem cells are capable of generating histologically-
similar tumors following implantation into naïve 
rodent recipients (Koch’s postulate). However, despite 
considerable effort, such cells have not been isolated 
from low-grade gliomas, raising intriguing questions 
about the microenvironmental conditions required for 
low-grade glioma establishment. In this regard, low-grade 
gliomas are highly dependent on their non-neoplastic 
microenvironment (stroma), and require microglia and 
other stromal cell types to initiate gliomagenesis and 
maintain tumor growth in GEM strains [43-45]: The 
failure to serially passage low-grade gliomas (e.g., 
pilocytic astrocytomas) using neurosphere preparations 
may not indicate an absence of GMSCs, but rather that the 
obligate stromal conditions are not accurately recapitulated 
in immunocompromised rats and mice. Alternatively, 
these low-grade glioma stem cells may harbor specific 
mutations that favor senescence, thus limiting their long-
term maintenance [46].

Moreover, stem cells that derive from fully-formed 
cancers do not need to have the same biological properties 
as their normal NSC counterparts. In this respect, some 
laboratories have reported that GMSCs lack the capacity 
to give rise to all three CNS cell types (multi-lineage 
differentiation) as well as exhibit new properties not 
shared with normal NSCs (e.g., relative resistance to 
chemotherapy or radiation; [47-50]). For example, while 
normal NSCs are normally quiescent, cancer-maintaining 
stem cells in some situations can still proliferate [51-
52]. In addition, there exists significant cancer stem 
cell heterogeneity in high-grade gliomas with respect 
to their cancer propagating ability [53]. Collectively, 
GMSCs represent those stem-like cells most capable of 
maintaining the tumor, such that their suppression limits 
glioma growth and increases the effectiveness of therapy.

Glioma-associated stem cells (GASCs). 

In addition to stem cells harboring initiating glioma-
associated genetic mutations, there are also recruited stem 
cells in both human and experimental murine glioma 
tumors. These stem cells may originate from outside of 
the brain parenchyma (e.g., hematopoietic stem cells; 
[54]) or from stem cell niches within the CNS [55-56]. 
The homing of these stem cells to the developing tumor 
represents a natural response to CNS injury [57-58], 
such as occurs in the setting of cerebral ischemia (stroke; 
[59-61]) or multiple sclerosis (experimental allergic 

Figure 1: Stem Cells in Glioma. Properties of neural 
stem cells include self-renewal, multi-lineage differentiation, 
and the ability to grow as neurospheres. GMSCs have the 
capacity to self-renew at limiting dilutions, undergo multi-
lineage differentiation, grow as neurospheres, and in some 
instances, give rise to gliomas following transplantation into 
immunocompromised hosts. Similarly, GISCs are capable of 
forming glioma in vivo following the acquisition of glioma-
causing genetic mutations.
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encephalomyelitis; [62-63]). The properties of these 
recruited stem cells thus reflect their region of origin 
(bone marrow, brain) in combination with remodeling 
that occurs as a result of adaptation to their newly 
adopted cellular environment. Aside from their potential 
therapeutic value as cellular payload delivery vehicles for 
oncolytic virus or chemotherapy [64-67], their function in 
glioma maintenance or response to treatment is unclear, 
with reports describing both glioma suppressing [68] 
and promoting [69] effects. Moreover, the markers used 
to define normal NSCs may not apply to those whose 
primary origins are outside of the brain.

Knowing one when you see one

Current methods for identifying glioma stem cells 
rely mainly on protein marker expression and functional 
assessments. Each of these methods is valid, but both 
have limitations, which are important to consider when 
classifying the diverse cellular populations that contribute 
to gliomagenesis and progression.

Cellular phenotyping. 

One of the criteria used to define glioma stem cells 
is the expression of stem cell markers, including CD133 
(prominin-1), sox2, Olig2, nestin, brain lipid binding 
protein (BLBP), and CD44, which derive from studies 
on both CNS and non-CNS progenitor cell populations 
[70-71]. However, it should be appreciated that none of 
these markers exclusively identify stem cells and all are 
expressed in different CNS cell types at varying times 
during brain development. For example, Olig2 is also 
expressed in oligodendrocyte progenitor cells, nestin in 
reactive astrocytes, CD44 in astrocytes and microglia, 
BLBP in radial glia, and sox2 in oligodendrocytes. CD133 
(prominin-1) has been uniformly used to mark glioma 
stem cells; yet, CD133-negative tumor cells have also been 
reported to generate tumors under specific conditions [72]. 
As mentioned above, it seems logical to develop antibody-
based reagents that can be used to study each of the stem 
cell populations relevant to glioma pathogenesis [73-74]. 
To this end, we and others have recently employed GEM 
glioma models to identify transcripts unique to GMSCs 
relative to their non-neoplastic NSC counterparts (GISCs). 

In addition, converging data from several 
laboratories have revealed striking heterogeneity in 
progenitor (stem) cells from different regions of the CNS 
[25, 75-76], raising the possibility that stem cell markers 
may differ depending on the brain region (cortex versus 
cerebellum) or developmental age (adult versus infant). 
For example, discrete gene expression patterns separate 
NSCs from the third and lateral ventricles [23] as well as 

neuroglial progenitors (radial glia) from the spinal cord 
and brain [78-79].

Functional phenotyping. 

The lumping of all glioma-related stem cells into 
one group assumes that they are all functionally similar. 
Since the roles they play in glioma pathogenesis may 
be remarkably different (tumor initiation versus tumor 
maintenance), it is also likely that their biological 
properties will be dissimilar and reflect these distinct 
roles. For example, glioma-initiating stem cells should, 
by definition, have the capabilities of normal NSCs, since 
the genetic alterations that created the cancers occurred 
in these very cells. However, once the tumor is formed, 
those stem cells may no longer have the properties found 
in their normal counterparts, as they have sustained a 
series of mutations that could potentially reprogram 
them and limit the capabilities of the resulting stem cell 

Figure 2: Several distinct populations of stem cells 
participate in glioma pathogenesis. Glioma-initiating stem 
cells (GISCs) originate from germinal zones and serve as the 
cellular substrates for gliomagenesis following the acquisition 
of cancer-initiating genetic mutations. Glioma-maintaining 
stem cells (GMSCs) are isolated from mature gliomas and can 
propagate these tumors following transplantation into naïve 
recipient brains. Glioma-associated stem cells (GASCs) are 
recruited from local (brain) or distant (hematopoietic stem cells; 
HSCs) sites to populate the brain tumor. 
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progeny. In addition, for those cancers that arise following 
the introduction of genetic changes in more differentiated 
cells, it is possible that the reprogramming that ensued 
following the acquisition of the causative genetic changes 
results in cancer stem cells with properties more similar 
to de-differentiated cell types. Finally, as mentioned 
above, several studies using different experimental mouse 
glioma systems have revealed that NSCs from different 
locations within the CNS have differential capacities to 
increase their expansion and to form tumors following the 
introduction of glioma-associated genetic mutations [23, 
77-79]. These findings further underscore the need to more 
fully appreciate the diversity of NSCs when characterizing 
glioma stem cell populations.

Why it matters

While it may appear to be an epistemological 
debate, defining the particular glioma stem cell has 
profound implications for the types of questions to be 
addressed. Employing definitions relevant for GMSCs to 
the study of GISCs is likely to create interpretation issues 
and may result in inaccurate experimental conclusions. For 
this reason, we propose a taxonomy system to facilitate 
more meaningful scientific inquiry and lead to improved 
translational impact (Figure 2). 

As such, studies focused on cell of origin (GISCs) 
should consider applying criteria used to characterize 
progenitor cells from that region of the CNS during the 
relevant developmental period. In this regard, tumor-
initiating cell investigations require a more in-depth 
understanding of the particular germinal zone from which 
the specific glioma derives. For pilocytic astrocytomas, 
characterizing the stem cell niches relevant to pediatric 
gliomagenesis (third and fourth ventricular zones) as well 
as defining the innate and stroma-influenced capabilities 
of these progenitors during early life is critical. Similarly, 
in the case of adult high-grade gliomas, the focus would 
be on adult progenitor populations in the ventricular 
zones (e.g., lateral ventricle or other gliomagenic regions, 
such as the subcortical white matter) thought to give rise 
to these tumors. Analogous approaches would also be 
leveraged to define GASCs, based on their tissue of origin 
and the impact that the tumor has on the function of these 
recruited stem cells.

In contrast, stem cells from fully-formed tumors 
would be expected to have different properties than those 
that served as the cells of origin for that malignancy. 
During the process of gliomagenesis, those GMSCs 
will have acquired new phenotypes conferred both by 
the glioma-associated genetic mutations, but also by the 
unique microenvironment in which the glioma resides. 
To identify the proteins and biological functions unique 
to GMSCs will require comparisons not only to non-

neoplastic primary NSCs containing these mutations, but 
also a more complete appreciation of how the glioma stem 
cell niche influences the epigenetic and gene expression 
profiles of these cells. A careful dissection of each of these 
stem cell populations offers new opportunities to more 
fully understand glioma formation, maintenance, and 
treatment.
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