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ABSTRACT

Copper and gold complexes have clinical activity in several diseases including 
cancer. Recently, we have reported that the anti-cancer activity of copper (II) 
pyrithione CuPT and gold (I) complex auranofin is associated with targeting the 19S 
proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. Here we discuss 
metal DUB inhibitors in treating cancer and other diseases. (from Editor). Several 
copper and gold complexes have clinical activity in treating some human diseases 
including cancer. Recently, we have reported that the anti-cancer activity of copper 
(II) pyrithione CuPT and gold (I) complex auranofin is tightly associated with their 
ability to target and inhibit the 19S proteasome-associated deubiquitinases (DUBs), 
UCHL5 and USP14. In this article we review small molecule inhibitors of DUBs and 
19S proteasome-associated DUBs. We then describe and discuss the ubique nature 
of CuPT and auranofin, which is inhibition of 19S proteasome-associated UCHL5 and 
USP14. We finally suggest the potential to develop novel, specific metal-based DUB 
inhibitors for treating cancer and other diseases.

INTRODUCTION

Ubiquitin-proteasome system and copper/gold 
complexes

The ubiquitin-proteasome system (UPS) mediates 
protein degradation through a cascade process. The target 
protein can be bonded to ubiquitin (Ub) through Ub-
activating enzymes (E1), Ub-conjugating enzymes (E2) and 
Ub-protein ligases (E3). The 26S proteasome, a multisubunit 
protein complex that exerts function with ATP, contains two 
19S proteasomes in both sides and a cylinder-shaped 20S 
proteasome in the middle. Ubiquitylated protein is degraded 
by 20S proteasome which has three related active proteolytic 
sites, chymotrypsine-like, trypsine-like and caspase-like. 
One physiological role of the 19S proteasome is to unfold 
and remove the Ub chains from the target protein in order 
to send the protein to 20S core [1-3].

Since the proteasome inhibitor bortezomib (Velcade, 
PS341) has been approved by FDA as a potent anti-multiple 
myeloma drug, the proteasome-mediated degradation 
pathway has proven to be an important target for developing 
novel drugs for the treatment of cancer and other diseases. Our 
laboratory and others have reported that the chymotrypsine-
like activity of the 20S proteasome is the important drug 
target for several medicinal and metal-containing antitumor 
proteasome inhibitors. Shikonin, a natural naphthoquinone 
isolated from the traditional Chinese medicine Zi Cao, 
inhibits the proteasome chymotrypsin-like activity in vitro 
and in vivo, associated with induction of the tumor cell death 
through accumulation of proapoptotic proteins IkB-α, Bax and 
p27 [4]. Sanggenon C, a natural prenylated flavonoid, inhibits 
tumor cellular proteasomal chymotrypsin-like activity and 
cell growth [5]. Gambogic acid, a natural compound derived 
from Chinese herbs approved by the Chinese Food and Drug 
Administration for clinical trials in cancer patients, produces 
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tissue-specific proteasome chymotrypsin-like inhibition and 
tumor-specific toxicity [6] and overcomes imatinib resistance 
by inducing proteasome inhibition and caspase-dependent 
Bcr-Abl downregulation [7]. Several  copper  compounds 
such as NCI-109268 and bis-8-hydroxyquinoline copper(II) 
[Cu(8-OHQ)(2)] can inhibit the chymotrypsin-like activity 
of purified 20S  proteasome and cellular proteasome 
activity [8]. Disulfiram, a member of the dithiocarbamate 
family capable of binding copper and an inhibitor of aldehyde 
dehydrogenase, inhibits proteasome chymotrypsin-like 
activity in copper-containing tumor cells and xenografts [9]. 
Clioquinol, a therapeutic agent for Alzheimer’s  disease, 
is able to target tumor  proteasome in  vivo in a copper-
dependent manner, resulting in formation of an active 
AR inhibitor and apoptosis inducer that is responsible for 
its observed antiprostate tumor effect [10]. Gallium(III)-
containing complexes show promising antineoplastic effects 
particularly in lymphomas and bladder cancer by acting as 
potent proteasome inhibitors [11]. The copper complexes 
binding with 1,10-phenanthroline as the third ligand also 
serve as potent, selective proteasome inhibitors and apoptosis 
inducers in human tumor cells, and these ternary complexes 
may be good potential antitumor drugs [12]. Some synthetic 
gold(III) dithiocarbamate complex shows the inhibitory 
activity to a purified 20S proteasome and 26S proteasome 
in intact highly metastatic breast cancer cells with the 
accumulation of ubiquitinated proteins and induction of 
apoptosis, which is also exhibiting inhibition in breast tumor-
bearing nude mice [13-14]. Two gold(III)-dithiocarbamato 
peptidomimetics target the MDA-MB-231 (resistant to 
cisplatin) breast cancer cell cultures and xenografts though 
proteasome chymotrypsin-like activity inhibition [15].

From the above observations we believed that 
metal complexes act as the potential antitumor drugs via 
targeting proteasome activity. In fact, it has been known 
that the platinum-based drug cisplatin, one of the most 
effective chemotherapy agents, exerts the antitumor activity. 
Furthermore, metal complexes have already been used as the 
potential antitumor drugs for treatment of various human 
diseases for centuries [16-18].

C o p p e r  h a s  a  l o n g  h i s t o r y  i n  m e d i c a l 
application [19]. Copper in cells is proved to trigger the 
ubiquitin aggregation [20], and binds certain types of 
organic ligands to form potent proteasome inhibitors and 
induce apoptosis in vitro and in vivo [8]. The reduced (Cu+) 
or oxidized (Cu2+) state of copper drives its diverse roles in 
structure and catalysis. Since Cu+ has an affinity for thiol and 
thioether groups and Cu2+ exhibits a preferred coordination 
to oxygen or imidazole nitrogen groups, these metal ions can 
participate in a wide spectrum of interactions with proteins 
to exert diverse structures and biochemical reactions [21]. 
Phosphine Cu+ complex (CP) as an efficient in vitro antitumor 
agent could induce ER-stress-mediated apoptosis in colon 
cancer cells and primary cells from B-acute lymphoblastic 
leukemia patients, and sensitize B-acute lymphoblastic 
leukemia cells to chemotherapeutic agents, associated with 
inhibition of all three proteolytic enzyme activities of the 

20S proteasome [22-23]. Cu2+ appears to induce fibril-fibril 
association without affecting fibrillar structure of Alzheimer’s 
disease amyloid-beta peptide [24]. The thioxotriazole 
Cu2+ complex A0 exhibits a significantly higher cytotoxic 
activity in the human fibrosarcoma cells with non-apoptotic 
programmed cell death [25]. A0 also causes paraptotic 
cell death via eIF2α phosphorylation and unfolded protein 
response (UPR) in human cancer cells [26].

Gold also has a long history as a potent therapeutic 
agent [27-31]. Gold (I) compounds such as auranofin have 
been used clinically to treat rheumatoid arthritis for many 
years. However, auranofin also exerts immunosuppressive 
activity which may through inhibiting MHC-restricted 
antigen presentation in professional antigen-presenting 
cells [32], and exhibits potent antimalarial effects by causing 
severe intracellular oxidative stress in vitro [33]. Auranofin 
can inhibit thioredoxin reductase-1, serving as a promising 
approach for lung cancer therapy [34]. Auranofin induces ER-
stress response in cultured and primary chronic lymphocytic 
leukemia cells [35]. Auranofin also increases levels of pro-
apoptotic proteins Bax and Bim and reduces anti-apoptotic 
protein Bcl-2 in ovarian carcinoma cells, and activates 
caspase-3-mediated apoptosis in a FOXO3-dependent 
manner [36]. Gold(III) and organogold(III) compounds 
have been reported as potential antitumor agents [37-39]. 
Two gold(III) methylsarcosinedithiocarbamate derivatives, 
combining cytostatic and apoptotic activity with reduced 
nephrotoxicity for the management of myeloid leukemia, 
can down-regulate Bcl-2 and upregulate Bax to induce cell 
death [40]. Iminophosphorane-organogold(III) complexes 
can induce tumor cell death through mitochondrial ROS 
production [41].

Deubiquitinases (DUBs) and their small molecules 
inhibitors

The UPS includes the large family of DUBs. DUBs 
mediate the deubiquitination of the proteolytic process of 
the UPS. DUBs belong to the superfamily of proteases. The 
human genome encodes at least 98 DUBs which belongs to 
6 subfamilies based on sequence and structural similarity: 
ubiquitin carboxy-terminal hydrolases (UCHs), ubiquitin-
specific proteases (USPs), ovarian-tumor proteases (OTUs), 
Machado-Joseph disease protein domain proteases, JAMM/
MPN domain-associated metallopeptidases (JAMMs) and 
monocyte chemotactic protein-induced protein (MCPIP) 
family [42-44]. All these are cysteine proteases except 
JAMMs family, which belongs to the metalloproteases 
catalytic class.

A number of DUBs have been shown to play a role 
in the process of diseases. UCHL1 is associated with a rare 
form of Parkinsonism and its accumulation is likely to play 
a pathological role in inclusion formation in Parkinson’s 
diseases [45]. Inhibition of USP1 leads to hyperaccumulation 
of monoubiquitinated FANCD2, a protein that appears to be 
critical in the repair of DNA damage [46]. High expression 
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levels of USP28 are found in colon and breast carcinomas, 
associated with the stabilization of MYC in the nucleus for 
tumor cell proliferation [47]. USP2 stabilizes cyclin D1 in 
order to maintain human cancer cell growth; targeting USP2 is 
therefore an effective approach to induce growth suppression 
of cancer cells addicted to cyclin D1 expression [48]. 
USP9X can stabilize MCL-1 to promote tumor cell survival 
through removing the Lys 48-linked polyubiquitin chains 
that normally mark MCL-1 for proteasomal degradation, 
which serves as a prognostic and therapeutic target of human 
malignancies [49]. Cylindromatosis tumor suppressor gene 
(CYLD), a member of the USPs family, was first identified 
as a tumor suppressor gene in the regulation of NF-κB 
activation [50]. A20, a member of the OTUs family, was 
first discovered after TNF-alpha treatment from mice 
deficient for A20 developed severe inflammation related with 
hypersensitivity to TNF-alpha [51].

Some DUB inhibitors have been reported to influence 
specific DUBs with diverse function. Ubiquitin aldehyde 
(Ubal) and ubiquitin vinylsulfone (UbVS) were used 
previously as irreversible DUB inhibitors mainly for the 
purpose of analysis of the three-dimensional structure of 
DUB enzymes, because their high molecular weight and 
limited specificity restrict their development to therapeutic 
drugs [52-53]. WP1130 is a small molecule that directly 
inhibits USP9X, USP5, USP14 and UCH37, all known as 
regulators of survival protein stability and 26S proteasome 
function; WP1130-mediated DUBs’ inhibition down-
regulates the antiapoptotic protein MCL-1 and upregulates 
the proapoptotic proteins p53 [54]. WP1130-induced 
unfolded protein response (UPR) blocks specific viral 
infection via activating the X-box binding protein-1 (XBP-1) 
in murine macrophages, suggesting its potential use for 
broad spectrum antiviral therapies [55]. P5091 is a small 
molecule-selective inhibitor of USP7, discovered by using a 
ubiquitin-phospholipase A2 enzyme reporter assay in a high 
throughput screening for inhibitors of USP7 from a diversity-
based library of small molecules. Supported by in vivo and 
in vitro data, P5091 acts as a potential anti-multiple myeloma 
drug to overcome bortezomib resistance [56]. P22077, 
another USP7 inhibitor, stabilizes p53 by inducing HDM2 
protein degradation in neuroblastoma (NB) cells and inhibits 
the xenograft growth of three cell lines in the NB mouse 
model [57]. PR-619 has been characterized as a broad-range, 
reversible DUB inhibitor of ubiquitin isopeptidases with 
potential to be developed into an anticancer chemotherapeutic 
agent. PR-619 also affects the microtubule network and 
causes protein aggregate formation in neural cells with 
implications in neurodegerative diseases [58,59].

19S proteasome-associated DUBs and their 
inhibitors

There are three important DUBs associated with the 
19S proteasome, the JAMM family member POH1 (also 
known as RPN11/pda1/S13/mpr1), the USP family member 

USP14 and the UCHs family member UCHL5 (also known as 
UCH37). POH1 is a Zn-dependent metalloprotease, whereas 
USP14 and UCHL5 are cysteine proteases [60].

POH1 is responsible for substrate deubiquitination 
during protein degradation in proteasome [61]. Overexpression 
of POH1 in mammalian cells may help tumor cell escape 
from chemotherapeutic agents through increased cell growth 
and resistance to cytotoxic drugs [62]. POH1 contributes 
to the regulation of c-Jun ubiqutination, stability and 
subcellular localization, suggesting a novel mechanism of 
c-Jun regulation in mammalian cells [63]. As a required 
enzymatic subunit of the 19S proteasome, the JAMM motif 
of POH1 is essential for cell viability [64]. It appears that 
POH1 cleaves at the base of the ubiquitin chain where it is 
linked to the target protein, whereas USP14 and UCHL5 
mediate a stepwise removal of ubiquitin from the protein by 
disassembling the chain from its distal tip [65]. The RNAi 
of UCHL5 or USP14 alone does not affect cell growth and 
proteasome composition but accelerates cellular protein 
degradation; however, RNAi of both UCHL5 and USP14 can 
inhibit cellular protein degradation. Thus proper proteasomal 
processing of ubiquitylated substrates needs POH1 plus either 
UCHL5 or USP14 [66].

USP14 regulates both the nature and magnitude of 
proteasome activity [67]. The role of USP14 in disease 
development remains unclear. In USP14-deficient ax(J) mice, 
the nervous systemic endogenous tau and ataxin-3 levels 
decrease and the phosphorylated tau levels increase which 
is accompanied by increased levels of activated phospho-
Akt, phosphorylated MAPKs, and inactivated phospho-
GSK3β, begging a better understanding of the treatment with 
chronic neurological diseases through the cellular pathways 
regulated by the proteasome [68]. The USP14 deficiency 
in the ax(J) mice contributes to diseases characterized by 
synaptic dysfunction [69]. Genetic and chemical suppression 
of USP14 activity caused an increase in Dishevelled (Dvl) 
polyubiquitination and significantly impaired downstream 
Wnt signaling, suggesting an oncogenic role for USP14 
through Wnt/β-catenin signaling enhancement [70]. USP14 
binding to the IRE1 protein for ER stress regulation indicates 
an important role in mutant Huntingtin-induced cell toxicity 
and the murine norovirus-caused infections [55, 71]. 
The USP14 expression is upregulated in non-small cell lung 
cancer (NSCLC) cells, especially in adenocarcinoma cells, 
suggesting its tumor-promoting function. Downregulation 
of USP14 expression is related to β-catenin degradation that 
blocks the NSCLC cell cycle progression [72]. Up-expression 
of miR-4782-3p is related with favorable prognosis in 
NSCLC cells through decreasing the USP14 expression [73]. 
Although USP14 usually plays an inhibitory role in protein 
degradation, overexpression of  USP14  induced I-κB 
degradation by linking RelA, the binding partner of I-κB, 
leading to increased cytokine release in lung epithelial 
cells [74].

UCHL5 is responsible for the ubiquitin isopeptidase 
activity in the 19S proteasome regulatory complex, acting 
as the constituent subunit like the POH1 subunit. Rpn13 
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binds the carboxy-terminal tail of UCHL5 in order to recruit 
it into proteasome through binding to Rpn2 subunit of the 
19S complex [75-77]. Rpn13 may involve the iNOS/IκB-α 
degradation and the interaction of iNOS/IκB-α with UCHL5, 
indicating the iNOS/IκB-α as the substrates for the Rpn13/
UCHL5 [78]. UCHL5 interacts with Smads and reverses 
Smurf-mediated ubiqutination, and it can also deubiquitinate 
and stabilize the type  I TGF-β receptor in cells [79]. 
UCHL5 protein expression is increased and required in 
high glucose-induced mouse mesangial cells in a possible 
PI3K-dependent fashion. UCHL5 shRNA attenuates high 
glucose-induced TGF-βR1 protein expression, TGF-βR1 
protein deubiquitination, p21 (WAF1) fibronectin protein 
expression, and cell hypertrophy [80]. UCHL5 may play 
an important role in apoptotic death through altering Bax/
Bcl-2 ratio and caspase-9/3 activities in A549  cells [81]. 
Overexpression of UCHL5 in hepatocellular carcinoma 
(HCC) cancerous cells can promote cell migration and 
invasion through interacting and deubiquitinating PRP19, 
an essential RNA splicing factor. UCHL5 expressing in vitro 
and in vivo suggests its predictor role for HCC recurrence 
after curative resection [82].

IU1 is a specific inhibitor of USP14 vs. other human 
DUBs including 19S proteasome DUBs, which is also able 
to enhance the proteasome activity [83]. This small-molecule 
inhibitor can prevent ventilator-induced lung injury in rats by 
attenuate intrapulmonary inflammatory response [84]. IU1 
also inhibits Dengue virus replication, providing new targets 
for therapeutic intervention against viruses from multiple 
families [85]. Based on the structure of IU1, a group of 
tricyclic heterocyclics have been developed to specifically 
inhibit USP14 activity. These compounds could accelerate 
the degradation of abnormal and/or misfolded proteins in the 
cells by targeting USP14 [86].

Another small molecule b-AP15 is first reported as a 
new tumor cell inhibitor to 19S regulatory-particle-associated 
deubiquitinases USP14 and UCHL5 activity without affecting 
20S core-particle-associated proteolytic activity [87]. b-AP15 
triggers apoptosis in the multiple myeloma (MM) cells and 
patient MM cells through caspase activation and overcomes 
20S proteasome inhibitor bortezomib resistance [88-89]. 
Exposure of tumor cell lines to b-AP15 resulted in increased 
TRAIL-R2 expression and enhanced sensitivity to TRAIL-
mediated apoptosis and cell death in vitro and in vivo [90]. 
b-AP15-induced sensitization to TRAIL-mediated apoptosis 
could be used as a novel strategy to augment the anticancer 
effects of adoptively infused NK and T cells in patients with 
cancer [91]. The effect of b-AP15 in cells can be impaired by 
the antioxidant N-ethylmaleimide that could cause inhibition 
of selenoprotein thioredoxin reductase to trigger oxidative 
stress [92]. Azepan-4-ones, similar to b-AP15 also possess 
the inhibitory activity to USP14 and UCHL5, but this set 
of compounds do not affect non-proteasomal DUBs. They 
are described as effective compounds for the treatment of 
tumor resistance especially the bortezomib-refractory tumors 
caused by over-expressing Bcl-2 protein [93].

AC17, a 4-arylidene curcumin analog synthesized by 

Zhou et al., serves as an irreversible 19S-associated DUB 
inhibitor while it does not affect 20S proteasome proteolytic 
activities. However, the AC17 targeting sites in 19S-related 
DUBs have not been determined. The inhibition of 19S 
proteasome DUBs by AC17 suppresses cell proliferation 
by blocking NF-κB activation and increasing p53, MDM2 
and p21 expression in both human lung adenocarcinoma 
A549 cells and xenograft model [94].

CuPT and auranofin on 19S proteasome-
associated UCHL5 and USP14

The application of the metal complex proteasome 
inhibitors in cancer therapy suggests that targeting the UPS 
by inhibiting the proteasome-associated DUBs may have 
potential uses clinically. Consistently, a reported panel 
of 2-phenylpyrindine gold(III) complexes containing a 
dithiocarbamate ligand display a promising inhibitory effect 
on UCHs and significant tumor cell cytotoxicity [95]. Two 
important recent reports on proteasome-associated metal 
complexes as DUBs inhibitors display promising in vivo 
anti-cancer activities against several cancers, further lending 
support to this view (Table 1) [96-97].

Copper pyrithione (CuPT) is an alternative to tributyltin 
for antifouling paint biocides [98]. We investigate the 
inhibitory effect of CuPT on USP14/UCHL5 activity and the 
relationship to cellular apoptosis in vitro and in vivo, towards 
the goal of developing novel DUB inhibitors and clinical 
anticancer strategy. We first compare the effect of PT/CuCl2 
alone and 2:1 PT/CuCl2 combination on a number of tumor 
cell lines, including human breast MCF-7, human multiple 
myeloma U266 and NCI-H929, and human hepatoma 
SMMC-7721. The results show that the combination of 
PT and CuCl2 induces cytotoxicity much more effectively 
than PT or CuCl2 along. However, we found that the 
PT+CuCl2, but not PT+H2O2 induced the UPS inhibition. 
We also observed that the combination (CuPT) of 1 Cu 
molecule and 2 PTs induced cytotoxicity in multiple cancer 
cell lines (24h IC50 values: MCF7 0.375 μM, U266 0.130 
μM, and HepG2 0.495 μM) and primary cancer cells from 
patients with acute myeloid leukemia (AML) (average 24h 
IC50=57.03 nM while CTR=101.08 nM). CuPT induced UPS 
malfunction which is similar to the mixture of PT and copper 
in human hepatoma HepG2 cells and GFPu-HEK293 cells 
with cellular ubiquitinated and GFP protein aggregation. It 
can only inhibit the chymotrypsine-like (but not caspase or 
trypsin-like activity) at high doses (>1 μM) of purified 20S 
proteasome under cell-free condition. Interestingly, low 
concentration of CuPT exerts inhibition on 19S-associated 
DUBs, USP14 and UCHL5. The computational study 
supports the docking affinity between CuPT and the 
19S-associated DUBs and suggests its relationship with 
inhibiting USP14 and UCHL5 activities. CuPT (0.5 μM) 
can inhibit the DUB activity significantly on the purified 
26S proteasome as the same as the pan DUB inhibitor NEM 
(with the concentration at 2 mM). Also, CuPT (0.5 and 1 μM) 
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Table 1: Classification and summary of the 19S‑associated DUB inhibitors
Inhibitor 19S‑associated 

DUB/s
Substrate/s First‑reported 

Function
Related cell lines and tumor 
model

References

WP1130 UCHL5, 
USP14 
(and USP9X, 
USP5)

MCL‑1, p53 Induces tumor 
cells apoptosis 
through selectively 
inhibiting DUBs

MM1.S, Z138, HEK293T [54]

IU1 USP14 Tau, TDP‑43, 
cODC‑EGFP

Accelerates the 
degradation of 
oxidized proteins 
and enhances 
resistance to 
oxidative stress 
in vitro

Primary mouse 
embryonic (MEFs), 
HEK293, HeLa

[83]

Tricyclic 
heterocyclics 
(IU2‑6)

USP14 Tau Accelerate the 
degradation of 
abnormal and/or 
misfolded proteins 
in cells

MEF [86]

b‑AP15 UCHL5, 
USP14

p53, ODC‑1, 
CDKN1B, 
CDKN1A, 
Caspase‑3, PARP

Inhibits tumor 
progression in vitro 
and in vivo

HCT‑116, SCID mice 
with FaDu human tumor 
xenografts, C57BL/6J mice 
with syngenic LLC tumor, 
BALB/C mice with orthotopic 
breast carcinomas (4T1), 
Xenograft‑derived CK18 in 
circulation

[87]

Azepan‑4‑ones UCHL5, 
USP14

Bcl‑2 Inhibit the 
refractory tumor

Multiple myeloma and other 
solid tumor malignancies like 
lung, prostate, colon, ovary, 
pancreas, breast, neck and 
head cancers

[93]

AC17 19S‑associated 
DUBs 

NF‑κB, p53, 
MDM2, p21

Suppresses the cell 
proliferation. 

A549, BALB/C nude mice 
with A549 xenograft.

[94]

AuIII UCHL1‑C
UCHL3‑C
UCHL5‑C
(C: a cysteine 
active site)

Caspase‑7,
PARP

induces 
cell‑cycle arrest, 
apoptosis and 
anti‑angiogenic 
property in breast 
cancer cells

MCF‑7, MDA‑MB‑231, 
HeLa, MIHA

[95]

CuPT UCHL5, 
USP14

p21, p27, Bax, 
IκB‑α, PARP, 
Caspase‑3, 
Caspase‑9, 
Caspase‑8,

Selectively inhibits 
tumor growth 
in vivo and induces 
cytotoxicity 
in vitro and ex vivo

MCF‑7, HepG2, U266, 
NCI‑H929, GFPu‑HEK293, 
Primary acute myeloid 
leukemia cells (AML), 
BALB/C nude mice with 
HepG2/NCI‑H929 xenografts

[96]

Auranofin UCHL5, 
USP14

c‑Jun, p21, 
IκB‑α, NF‑κB, 
CHOP, 
Caspase‑3,8,9,12, 
PARP

Inhibits tumor 
growth in vivo 
and induces 
cytotoxicity 
in vitro and ex vivo

MCF‑7, HepG2, 
GFPu‑HEK293, Primary 
acute myeloid leukemia 
cells (AML), BAB/C nude 
mice with HepG2/MCF‑7 
xenografts

[97]
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blocks 26S proteasome-cleaved K48-linked Ub chains and 
is able to compete with UbVS’s binding with both USP14 
and UCHL5 in a dose-dependent manner. Daily treatment of 
mice bearing HepG2 and NCI-H929 xenografts with 2.5 mg/
kg/day CuPT for 15 and 5 days resulted in significant tumor 
growth inhibition. Associated with this growth inhibition, 
a significant accumulation of ubiquitinated proteins, K48-
linked proteins, p21, p27, Bax and IκB-α are detected.

Auranofin, a gold-containing compound, is clinically 
used to cure rheumatic arthritis, and recently approved by US 
food and drug administration for phase II clinical trial to treat 
cancer. We report for the first time that this clinically used 
metal complex drug auranofin is a specific inhibitor of the 
19S-associated DUBs, USP14 and UCHL5 with promising 
antitumor effects. We showed that auranofin potently 
inhibited proliferation of two tumor cell lines, HepG2 and 
MCF-7, with 24h IC50 values of 0.43 μM and 1.50 μM, 
48h IC50 of 0.17 μM and 0.41 μM, respectively. Moreover, 
auranofin treatment for 24h induces apoptotic morphological 
changes in HepG2 (at 0.25 μM) and MCF-7 (0.5 μM) cells. 
The flow cytometry data also supports the results observed 
with fluorescence microscopy. Apoptotic specific changes in 
caspase and PARP proteins are showed in dose-dependent 
manner after auranofin treatment, demonstrating that 
the auranofin-triggered apoptosis is related with caspase 
activation. Next, we found that auranofin at 0.5 μM for 3h 
induces marked increases in total, K48-  and K63-linked 
ubiquitinated proteins, indicating its UPS inhibitory effect. 
GFPu proteins and fluorescent images also supported the 
inhibitory effect of auranofin. The proteasome substrate 
proteins p21 and c-Jun increase after 9h treatment of 
auranofin. Importantly, we observed that the K48-linked 
accumulation induced by therapeutic dose of auranofin 
(0.5 μM) is similar to bortezomib at dose between 20 and 
40 nM in K562 cells. These results indicate that a therapeutic 
dose of auranofin can achieve bortezomib’s UPS inhibitory 
effect. The computational molecular docking, DUB activity, 
K48-linked Ub chains cleavage and HA-UbVS (HA-tagged 
ubiquitin-Vinyl Sulfone, which covalently binds to the 
active sites of the cysteine proteasome families of DUBs) 
competitive binding experiments are all implemented to 
prove auranofin’s inhibitory activity to 19S-associated 
DUBs. The computational model also indicates that an active 
metabolite of auranofin can inhibit UCHL5 and USP14.

Ub-AMC is a fluorogenic substrate for a wide range of 
DUBs including UCHs and USPs. Using Ub-AMC as a DUB 
substrate, auranofin slightly inhibits the total cytoplasmic 
DUB activities while completely inhibits the purified 26S 
proteasome-associated DUB activities at 2 μM (as the same 
effect as 2 mM NEM). We used NAC, a thiol-containing 
compound, to block the active site of auranofin and found 
NAC recovers most auranofin-mediated DUB inhibition to 
purified 26S proteasome, which confirms the computational 
model results that auranofin targets proteasome-associated 
UCHL5 and USP14. K48-linked Ub chains cleavage is 
partially blocked by auranofin in a dose-dependent manner. 
HA-UbVS pretreatment of auranofin could bind the HA-

tagged UbVS in the purified 26S proteasome, supporting 
that auranofin inhibits UCHL5 and USP14. NAC completely 
reverses auranofin-induced Ub-prs accumulation, caspase 
activation and PARP cleavage in HepG2 and MCF-7 cells 
which indicates that the proteasome inhibition is required 
for auranofin-induced cytotoxicity.

To preclude the ROS generation-induced cell death, we 
use Tbhq, a phenol-containing antioxidant that cannot bind the 
active atom site of auranofin, to scavenge auranofin-mediated 
ROS generation while not blocking auranofin-mediated 
proteasome inhibition and PARP cleavage. Auranofin also 
interferes with multiple proteasome-related signal proteins 
such as CHOP, caspase 12, IκB-α and NF-κB p65. Daily 
treatment of mice bearing HepG2 and MCF-7 xenografts 
with 6 mg/kg/day auranofin for 15 and 21 days resulted in 
significant tumor growth inhibition. Associated with this 
growth inhibition, a significant accumulation of ubiquitinated 
proteins, Ub-prs, K48/K63-linked proteins, c-Jun, p21 are 
observed that shows the auranofin-mediated tumor growth 
and proteasome function inhibition. Moreover, auranofin 
can selectively induce cytotoxicity in primary monocytes 
from patients with AML (average 24h IC50=0.159 μM while 
CTR=0.622 μM). Furthermore, our recent study reveals that 
auranofin overcomes Imatinib mesylate resistance through 
both Bcr/Abl-dependent and -independent mechanisms, and 
proteasome inhibition but not ROS is required for auranofin-
induced caspase activation and apoptosis [99].

Therefore, CuPT can potently inhibit the 19S 
proteasome-associated UCHL5 and USP14 DUB activities at 
0.5 μM dose, while it can also directly inhibit 20S proteasome 
activities at relatively higher doses than their cytotoxic doses 
in the cell. The latter inhibition might be related to the direct 
copper binding to proteasome peptidase subunits in the cell. 
However, under our experimental conditions, auranofin does 
not inhibit the activities of chymotrypsin-like, trypsin-like or 
caspase-like activities of 20S proteasomes which is different 
from the 20S proteasome inhibitors such as bortezomib. We 
suggest that Auranofin is the first DUB inhibitor reported to 
treat human disease in clinical use. We are currently using 
various complexes of metals including cadmium, zinc, 
nickel and platinum containing the same chelating ligand 
pyrithione to compare their effects on the UPS. The results 
of these experiments might be able to lead to a discovery of 
the clinical potential metal-based proteasome inhibitors for 
cancer therapy.

CONCLUSIONS AND OUTLOOKS

In summary, we suggest the applications of the copper/
gold complexes as a class inhibitors of deubiquitinates 
including the 19S proteasome-associated deubiquitinases. 
We have demonstrated that CuPT and auranofin are the novel 
metal inhibitors of UCHL5 and USP14 of the 19S proteasome 
by using several tumor models, including hematological 
malignancies, several solid tumor models and primary cells 
of the acute myeloid leukemia patients. We expect that the 
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metal complexes could be developed to the potent inhibitors 
of 19S proteasome-associated deubiquitinases and be used 
for treating cancer and many other human diseases.
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