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ABSTRACT

Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) holds 
great promise for cancer treatment. We recently developed CAR T cells targeting the 
prototypic cancer stem cell marker AC133 and showed that these CAR T cells killed 
AC133+ glioblastoma stem cells (GBM-SCs) in vitro and inhibited the growth of brain 
tumors initiated from GBM-SCs in xenograft mouse models in vivo. Upon coincubation 
with GBM-SCs, we observed strong upregulation of the T cell aging marker CD57, 
but other phenotypical or functional changes usually associated with terminal 
T cell differentiation could not immediately be detected. Here, we provide evidence 
suggesting that CD57 is rapidly and efficiently transferred from CD57+ GBM-SCs to 
preactivated T cells and that the transfer is greatly enhanced by specific CAR/ligand 
interaction. After separation from CD57+ tumor cells, CD57 epitope expression on T 
cells decreased only slowly over several days. We conclude that CD57 transfer from 
tumor cells to T cells may occur in patients with CD57+ tumors and that it may have 
to be considered in the interpretation of phenotyping results for tumor-infiltrating 
lymphocytes and perhaps also in the characterization of tumor-specific T cells from 
tumor or lymph node homogenates or peripheral blood mononuclear cells.

INTRODUCTION

Tumor-specific chimeric antigen receptors (CARs) 
are recombinant molecules consisting of an antibody moiety 
specific for a tumor cell surface antigen fused to intracellular 
signaling domains of the physiological T cell receptor (TCR) 
and of costimulatory receptors [1]. Engineered T cells 
expressing CARs are therefore capable of recognizing 
tumor cells in a major histocompatibility complex (MHC)-
independent manner, resulting in T cell activation and 
killing of bound target cells. CAR T cells have shown 
extraordinarily high activity against CD19+ hematological 
malignancies [2,3], and great efforts are undertaken to 
develop CAR T cells for the treatment of other hematological 
malignancies and solid tumors.

We recently reported on CAR T cells recognizing the 
cancer stem cell (CSC) antigen AC133, an N-glycosylation-
dependent, stem cell-specific epitope of CD133, marking 
CSCs of many tumor entities including the highly malignant 
glioblastoma multiforme (GBM) [4,5]. These CAR T cells 

killed AC133+ tumor cells, including patient-derived 
glioblastoma stem cells (GBM-SCs), in vitro and in 
orthotopic tumor models in vivo [6].

The functionality of conventional T cells is impaired 
by the activation of negative regulatory immune checkpoints, 
T cell exhaustion and terminal T cell differentiation, 
i.e., processes that are induced by repetitive chronic TCR-
mediated stimulation [7-9]. The functionality of CAR T cells 
may also be compromised by these factors [10,11]. We 
therefore analyzed the expression of T cell surface markers 
indicative of the respective functional impairments.

Upon coincubation of CAR T cells with patient-derived 
GBM-SCs, we consistently observed an upregulation of 
CD57 [6], a terminally sulfated carbohydrate epitope best 
known as a marker for terminally differentiated, end-stage 
T cells [12,13]. Truly terminally differentiated T cells lose 
their proliferative capacity and expression of the positive 
costimulatory molecules CD27 and CD28, which usually 
correlates with loss of telomerase activity and critical 
shortening of the telomeres; in addition, they upregulate the 
cytotoxic granule molecules granzyme B and perforin [7,12]. 
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However, we neither observed a loss of the proliferative 
capacity of CD57+ CAR T cells upon subsequent short-
term re-exposure to AC133+ target cells nor did we observe 
the downregulation of CD27 or CD28 [6]. Wu et al. [14] 
recently described a subpopulation of melanoma-specific 
CD8+ tumor-infiltrating lymphocytes (TILs) with hybrid 
phenotypic and functional properties of both an early 
effector-memory cell and a terminally differentiated effector 
cell co-expressing CD27, CD28, and CD57. These CD57+ 
T cells were classified as incompletely differentiated T cells. 
This TIL subpopulation lost CD27 expression and gained 
expression of the cytotoxic granule protein perforin after 
subsequent anti-CD3/anti-CD28-mediated stimulation, 
indicating transition to the terminally differentiated state.

We previously observed that CD57 expression on 
CAR T cells increased very rapidly (in less than 2 h) and 
only upon coculture with patient-derived GBM-SCs, but 
not with conventional U251 glioma cells [6]. Since CD57 
has been found on neuroblastoma and Ewing sarcoma cells 
with aggressive CSC-like features [15,16], we investigated 
if CD57 was expressed by the GBM-SCs. CD57 was indeed 
expressed on all patient-derived GBM-SC lines studied, but it 
was not lost upon their differentiation, which let us conclude 
that CD57 is not a bona fide CSC marker for GBM [6].

The observation that CD57 increased on CAR T cells 

in less than a few hours and only upon encounter with 
CD57+ target cells suggested that proteins expressing 
CD57 carbohydrate epitopes may simply be transferred 
from CD57+ tumor cells to CAR T cells. In our previous 
work, we tried to prove the transfer of CD57+ proteins to 
T cells after prelabeling of CD57 on the tumor cells with 
a fluorescently labeled anti-CD57 antibody [6]. However, 
antibody binding may have hindered the intercellular 
transfer of CD57+ proteins onto the T cells. We have now 
obtained more evidence suggesting that CD57 is indeed 
rapidly and efficiently transferred from CD57+ tumor cells to 
prestimulated T cells and that this process is greatly enhanced 
by the specific CAR/ligand interaction.

We first evaluated the detailed kinetics of CD57 
upregulation on AC133-specific CAR T cells upon coculture 
with CD57+ tumor cells. As shown in Figure 1, strong 
upregulation of CD57 on the T cells occurred very rapidly, 
within 10 min, regardless of whether AC133-CAR or 
nontransfected (NT) prestimulated control CD8+ T cells 
were cocultured with AC133+ CD57+ NCH421k GBM-SCs. 
This ruled out the possibility that CD57 expression resulted 
from transcriptional and translational changes in the T cells, 
at least at the beginning of the coincubation period. Rather, 
it was likely the result of a direct transfer of the CD57+ 
proteins from the tumor cells to the T cells. The specific 

Figure 1: Kinetics of the gain of CD57 expression on T cells upon coincubation with CD57+ AC133+ NCH421k GBM-
SCs. AC133-CAR T cells or NT anti-CD3-prestimulated T cells were cocultured with NCH421k GBM-SCs at a ratio of 1:1 for the indicated 
periods of time. Thereafter, the percentage of CD57+ cells among the CD8+ T cells (A) and the CD57 expression level on the T cells (B) were 
assessed by flow cytometry (for details of Materials and Methods, see Ref. [6]). On the vast majority of AC133-CAR or NT T cells, CD57 
expression was already detected within 10 min of coincubation; however, the per cell expression level was considerably higher on AC133-
CAR than on NT T cells. Data are representative of one out of three experiments, measured in triplicate, and are presented as mean ± SD. 
MFI, mean fluorescence intensity.
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CAR/ligand interaction strongly enhanced the transfer. Not 
only was the percentage of CD57+ T cells higher when CAR 
T cells were incubated with NCH421k GBM-SCs compared 
to NT T cells (Figure 1A), but also the mean fluorescence 
intensity (MFI) was higher (Figure 1B). The MFI for CD57 
expression increased 7–26-fold for the AC133-CAR T cells 
while it increased only 2–6-fold for the NT control T cells at 
different time points of coincubation with AC133+ CD57+ 
tumor cells.

Since transfer of CD57 from tumor cells to T cells 
may affect the phenotyping of TILs isolated from tumor or 
lymph node homogenates or of tumor-specific T cells from 
peripheral blood mononuclear cells (PBMCs), we wanted 

to find out for how long CD57 can be detected on T cells 
after separation from the CD57+ tumor cells. As shown in 
Figure 2, 4 days after the separation of the AC133-specific 
CAR or NT control T cells from the AC133+ CD57+ 
NCH421k GBM-SCs, more than 90% of the CAR T cells or 
80% of the NT cells were still CD57+ (Figure 2A). Although 
the MFI for CD57 expression on the CAR T cells had slowly 
and continuously dropped after separation from the tumor 
cells, CD57 was still significantly expressed after 4 days 
(Figure 2B, top panels). Of note, during this 4-day period, 
no strong CD57 expression was detected on the T cells when 
they had been preincubated with CD57– AC133+ tumor 
cells (Figure 2B, bottom panels); it is therefore unlikely that 

Figure 2: CD57 epitope expression on T cells decreases only slowly over a period of several days after separation from 
CD57+ tumor cells. AC133-CAR T cells or NT control T cells were cocultured with CD57+ AC133+ NCH421k GBM-SCs or CD57– 
AC133+ CD133-OE U251 cells at a ratio of 1:1 for 4 h. Thereafter, CD8+ T cells were purified from the coculture using the EasySepTM 
Human CD8 Positive Selection Kit (STEMCELL Technologies). After separation, the T cells were cultured in T cell medium for the indicated 
periods of time and CD57 expression was then determined by flow cytometry (for details of Materials and Methods, see Ref. [6]). (A) 
Percentage of CD57+ cells among the CD8+ T cells at the indicated time periods after separation from the CD57+ tumor cells. Data are 
representative of one out of three experiments, measured in triplicate, and are presented as mean ± SD. (B) Representative flow cytometry 
results. The percentage of CD57+ cells among the CD8+ CAR T cells is indicated in green; the MFI is given in red.
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Figure 3: Transfer of biotinylated proteins and AC133 from glioma cells to preactivated CD8+ T cells. For biotinylation of 
AC133+ glioma cells, either NCH421k GBM-SCs or CD133-OE U251 cells were incubated with EZ-Link Sulfo-NHS-LC-Biotin (PierceTM) 
following the manufacturer’s protocol. AC133-specific CAR T cells, NT anti-CD3-prestimulated T cells, or PBMCs were cocultured with 
biotinylated tumor cells at a ratio of 1:1 for 4 h. Thereafter, expression levels of biotinylated proteins (after staining with PE-streptavidin, 
Biolegend) or AC133 (after staining with anti-AC133 as described in Ref. [6]) were determined by flow cytometry (A). (B) To determine 
for how long the transferred biotinylated proteins can be detected on the separated T cells, CD8+ T cells were isolated from the coculture 
and further cultured in T cell medium for 4 days, as described in the legend to Figure 2. At the indicated periods of time after separation, the 
percentage of biotin+ cells among the CD8+ CAR T cells was determined by flow cytometry and is indicated in green; the MFI is given in 
red. Data presented are representative of at least three independent experiments.



www.impactjournals.com/oncoscience 480 Oncoscience

the high CD57 expression level on the T cells during the 
4-day period following incubation with the CD57+ tumor 
cells was due to endogenous expression by the T cells. 
Taken together, these results suggest that CD57 transfer 
from CD57+ tumor cells to T cells could indeed contribute 
to CD57 expression on tumor-specific T cells isolated from 
tumor or lymph node homogenates or PBMCs of patients 
with CD57+ tumors.

The aforementioned findings suggest that T cells 
might gain CD57 via trogocytosis [17,18], a process where 
membrane fragments are directly transferred between cells 
within a few minutes and are detectable on the recipient cells 
for a considerable period of time [19-21]. Via trogocytosis, a 
wide range of proteins are usually transferred between cells. 
Therefore, we wanted to figure out if membrane proteins other 
than CD57 were transferred between tumor cells and T cells. 
For this purpose, we studied the transfer of biotinylated 
membrane proteins or AC133. In these experiments, AC133-
specific CAR T cells, NT control T cells, or primary CD8+ 
T cells from PBMCs were incubated with biotinylated 
NCH421k GBM-SCs or CD133-overexpressing U251 
glioma cells (CD133-OE U251), which exhibit 10–15-fold 
higher AC133 expression than NCH421k GBM-SCs [6,22]. 
As shown in Figure 3A, we indeed observed that not only 
AC133 but also biotinylated proteins were transferred from 
glioma cells to CD8+ T cells. The transfer of biotinylated 
membrane proteins (Figure 3A, top panels) was influenced 
by two factors: (i) the activation status of the T cells (high 
transfer only occurred onto anti-CD3-prestimulated CAR 
T and NT T cells but not onto primary CD8+ T cells) and 
(ii) the expression of the tumor-specific CAR (much more 
biotinylated proteins were transferred onto AC133-CAR 
T cells than onto NT T cells). The transfer of AC133 
(Figure 3A, bottom panels) was also strongly influenced by 
the AC133 expression level on the tumor cells (much more 

AC133 was transferred from CD133-OE U251 cells than 
from NCH421k GBM-SCs). An influence of the molecule  
level on the tumor cells was also observed in our previous 
report [6] for CD57 upregulation on T cells (higher CD57 
expression on GBM-SCs conferred higher upregulation of 
CD57 on CAR T cells after coincubation). Similar to what 
we observed for CD57 (see Figure 2), the biotinylated 
proteins transferred from the tumor cells to the CAR T cells 
were detectable for at least 4 days on the T cell surface after 
separation from the tumor cells (Figure 3B).

As shown in Figure 3A, only a minor fraction of the 
primary CD8+ T cells acquired biotinylated proteins and 
AC133 from the tumor cells. To figure out if membrane 
proteins were also transferred onto naïve CD8+ T cells, we 
compared the amount of biotinylated proteins and AC133 
between naïve T cells (CD45RA+ CD62L+) and memory 
T cells (CD45RO+) upon coincubation of PBMCs with the 
tumor cells. Both naïve and memory T cells acquired proteins 
from tumor cells, although the memory T cells acquired more 
proteins (data not shown).

The data presented here suggest an extremely rapid 
and efficient transfer of CD57 from AC133+ CD57+ tumor 
cells to AC133-specific CAR T cells. Together with our 
previous findings [6], the data suggest that CD57 expression 
on tumor-specific T cells does not always indicate terminal or 
near-terminal T cell differentiation and that it could, at least 
in part, also simply reflect a recent encounter with CD57+ 
tumor cells. Furthermore, the data strongly suggest that the 
CD57 transfer is greatly increased by specific, receptor-
mediated interaction between the tumor cells and T cells 
(Figure 4). This transfer likely occurs through trogocytosis. 
For conventional T cells, evidence of membrane protein 
transfer from antigen-presenting cells or tumor cells by 
trogocytosis facilitated by specific peptide-MHC/TCR 
interaction has already been reported [23]. We now report 

Figure 4: Schematic representation of the intercellular transfer efficiency of membrane proteins from glioma cells to 
CD8+ T cells. The experimental data suggest that primary CD8+ T cells acquire only low amounts of protein from tumor cells. Transfer 
to polyclonal T cells prestimulated with anti-CD3 (as described in Ref. [6]) is much higher and is further considerably increased by specific 
CAR/ligand interaction.
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evidence that the intercellular transfer of membrane proteins 
to T cells is also greatly facilitated by specific CAR/CAR 
target interaction. However, CD57 was also transferred to 
anti-CD3-prestimulated control T cells, albeit to a lesser 
extent (Figure 4). Transfer to primary or naïve T cells was 
negligible. Intercellular transfer of CD57 from tumor cells 
to T cells may have to be considered in the interpretation 
of phenotyping results for TILs from CD57+ tumor entities 
such as brain tumors [6,24-26] and neuroectodermal 
tumors (including neuroblastoma, Ewing’s sarcoma, and 
melanoma [15,16,27,28]), at least in case of in situ analyses 
such as immunohistochemical analyses. Since the CD57 
levels on T cells only slowly decreased over several days 
after separation from CD57+ tumor cells, the intercellular 
transfer may even contribute to CD57 expression on effector/
memory T cells in PBMCs from patients with CD57+ 
tumors.
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